
SOLUTIONS FOR IMO 2005 PROBLEMS

AMIR JAFARI AND KASRA RAFI

Problem 1. Six points are chosen on the sides of an equilateral triangle
ABC: A1, A2 on BC; B1, B2 on CA; C1, C2 on AB. These points are the
vertices of a convex hexagon A1A2B1B2C1C2 with equal side lengths. Prove
that the lines A1B2, B1C2 and C1A2 are concurrent.
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Solution: In triangles 4AB2C1 and 4BC2A1, ∠A = ∠B. Therefore, if
∠BC2A1 > ∠AB2C1, then ∠BA1C2 < ∠AC1B2. But |A1C2| = |B2C1|.
Therefore, the law of sines implies

|BA1| > |AC1| ⇒ |BC2| < |AB2|.
On the other hand, we have |BC2|+ |AC1| = |AB2|+ |CB1|. Therefore,

|BC2| < |AB2| ⇒ |AC1| > |CB1|.
By a similar argument, we have:

|BA1| > |AC1| ⇒ |AC1| > |CB1|
⇒ |CB1| > |BA1|.

The contradiction shows that |BA1| = |AC1| = |CB1|. Thus, the three
triangles 4AB2C1, 4BC2A1 and 4CA2B1 are congruent. This implies
that the triangle 4A2B2C2 is equilateral and A1B2, B1C2 and C1A2 are its
heights. Therefore they are concurrent.
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Problem 2. Let a1, a2, . . . be a sequence of integers with infinitely many
positive terms and infinitely many negative terms. Suppose that for each
positive integer n, the numbers a1, a2, ..., an leave n different remainders on
division by n. Prove that each integer occurs exactly once in the sequence.

Solution: Let An = {a1, ..., an}. Elements of An are distinct, because they
are distinct modulo n. Observe that, for ai, aj ∈ An, k := |ai − aj | < n,
because, otherwise, ai, aj ∈ Ak and ai ≡ aj mod k. Therefore,

max An −minAn < n.

But An consists of n distinct integers. Therefore, for mn = minAn,

An = {mn,mn + 1, . . . ,mn + n− 1}.
There are infinitely many negative and positive numbers in the sequence;
therefore, all integers have to appear in our sequence. This finishes the
proof.
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Problem 3. Let x, y and z be positive real numbers such that xyz ≥ 1.
Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0.

Solution: The above inequality is equivalent to

(1)
1

x5 + y2 + z2
+

1
x2 + y5 + z2

+
1

x2 + y2 + z5
≤ 3

x2 + y2 + z2
.

We have

(x5 + y2 + z2) (y z + y2 + z2) ≥ (
√

x5 y z + y2 + z2)2(Cauchy-Schwarz)

≥ (x2 + y2 + z2)2.(xyz ≥ 1)

Therefore,

1
x5 + y2 + z2

≤ y z + y2 + z2

(x2 + y2 + z2)2
≤

y2+z2

2 + y2 + z2

(x2 + y2 + z2)2
.

Similarly,

1
x2 + y5 + z2

≤
x2+z2

2 + x2 + z2

(x2 + y2 + z2)2
and

1
x2 + y2 + z5

≤
x2+y2

2 + x2 + y2

(x2 + y2 + z2)2
.

Adding the above three inequalities proves (1).
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Problem 4. Consider the sequence a1, a2, . . . defined by

an = 2n + 3n + 6n − 1 (n = 1, 2, . . .).

Determine all positive integers that are relatively prime to every term of the
sequence.

Solution: If p > 3, then 2p−2 +3p−2 +6p−2 ≡ 1 mod p. To see this, multiply
both sides by 6 to get :

3 · 2p−1 + 2 · 3p−1 + 6p−1 ≡ 6 mod p,

which is a consequence of Fermat’s little theorem. Therefore p divides ap−2.
Also, 2 divides a1 and 3 divides a2. So, there is no number other than 1
that is relatively prime to all the terms in the sequence.
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Problem 5. Let ABCD be a given convex quadrilateral with sides BC
and AD equal in length and not parallel. Let E and F be interior points
of the sides BC and AD respectively such that BE = DF . The lines AC
and BD meet at P , the lines BD and EF meet at Q, the lines EF and AC
meet at R. Consider all the triangles PQR as E and F vary. Show that the
circumcircles of these triangles have a common point other than P .
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Solution: The circumcircles of the triangles 4PAD and 4PBC intersect
in points P and T . We claim that T is the desired point, i.e., P , Q, R and
T lie on a circle. To prove this we show that the angles ∠TPR and ∠TQR
are equal.

The angles ∠ADT and ∠APT are complimentary, therefore ∠ADT =
∠TPC. But ∠TPC is also equal to ∠TBC. Therefore, ∠ADT = ∠TBC.
Similarly, ∠TAD = ∠TCB. This implies that the triangles 4ATD and
4BTC are equal. In particular, 4TFD = 4TEB. This, in turn, im-
plies that the isosceles triangles 4ETF and 4BTD are similar. Therefore,
∠QFT = ∠QDT . This means that D, Q, F and T lie on a circle, and
thus ∠FDT = ∠RQT . But ∠FDT was also equal to ∠TPR. Hence,
∠TPR = ∠TQR which is as we claimed.
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Problem 6. In a mathematical competition 6 problems were posed to the
contestants. Each pair of problems was solved by more than 2

5 of the con-
testants. Nobody solved all 6 problems. Show that there were at least 2
contestants who each solved exactly 5 problems.

Solution: Let n be the number of contestants, c be the number of contestants
who solved exactly 5 problems and pij be the number of contestants who
solved problems i and j, for 1 ≤ i, j ≤ 6. We know that:∑

i,j

pij ≥
(

6
2

)
2 n + 1

5
= 6n + 3.

Also, ∑
i,j

pij ≤
(

5
2

)
c +

(
4
2

)
(n− c) = 6 n + 4 c.

Therefore, 4c ≥ 3. This shows that there is at least one contestant who
solved exactly 5 problems. If 2 n + 1 is not divisible by 5, then we can
replace 2 n+1

5 in the above argument by 2 n+2
5 and this will imply that 4c ≥ 6

and hence there are at least two contestants who have solved 5 problems.
Now assume that 2 n + 1 is divisible by 5, i.e., n = 5 k + 2, for some pos-

itive integer k. Assuming that there is exactly one person who has solved
5 problems and the rest have solved exactly 4 problems will lead to a con-
tradiction, as we now argue in two cases. We call the only person who has
solved 5 problems the champion.

Case 1. Assume that n is not divisible by 3. Let ai be the number of
contestants besides the champion who have solved problem i. Then∑

i

ai = 4 (n− 1) = 4 n− 4.

Let problem 1 be the problem that the champion missed. There are 5 pairs
of problems containing problem 1, and they have been solved by at least
52 n+1

5 = 2 n + 1 contestants. Since each person who has solved problem 1
has solved exactly 3 other problems, every such person has solved 3 of above
5 pairs of problems. Thus

3 a1 ≥ 2 n + 1.

For i > 1, the champion has solved 4 pairs that include i. The above
argument implies, 3 ai ≥ 2 n− 3. But, n is not divisible by 3. Therefore

3 ai ≥ 2 n− 2.

Adding the above inequalities we get:∑
3 ai ≥ (2 n + 1) + 5 (2n− 2) = 12 n− 9,

which is a contradiction because the left hand side is 12n− 12.
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Case 2. We are left with the case where n is divisible by 3 and is of the
form 5 k + 2, i.e., n = 15 h − 3, and each pair of problems is solved by at
least 6 h − 1 contestants. As before, assume that the champion has not
solved problem 1 and that a1 be the number of people who have solved this
problem. Each of them has solved 3 other problems. So they have each
solved 3 pairs of problems containing problem 1. That is:

3 a1 ≥ 5 (6h− 1) = 30 h− 5.

But a1 is an integer; therefore,

(2) a1 ≥ 10 h− 1.

Restricting our attention to 10 pairs of problems that do not contain 1, we
observe that there are at least 10 (6 h − 1) contestants who have solved at
least one of these pairs. On the other hand, the champion has solved 10
pairs, the a1 contestants who have solved problem 1 have solved 3 a1 pairs
and the rest have solved

(
4
2

)
(15 h− 4− a1) pairs. That is,

10 + 3 a1 +
(

4
2

)
(15 h− 4− a1) ≥ 10 (6h− 1) ⇒ 3 a1 ≤ 30 h− 4.

This contradicts the inequality (2). Therefore, more than one contestant
solved 5 problems.


