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Tokyo, Japan, July 2003

1. Let A be a 101-element subset of the set S = {1,2,3,...,1000000}. Prove that there
exist numbers tq,%s,...,t100 in S such that the sets

Aj={z+tj|ze A} foreachj=1,2,...,100

are pairwise disjoint.

Soln. Let D ={z —y | z,y € A,z > y}. If A;NA; # 0, then there exist z,y € A, such
that x +t, =y +1tj or 0 #t; —t; =y —a € D (without loss of generality, assume that
y>x.

Take t; = 1 and choose the smallest to € S such that to & Dy = {x +t1 | z € D}.
In general, if ¢1,...,%;, © < 100 has been chosen, choose the smallest ¢;11 € S such that

tis1 € Dy ={x+t, |z €D}, k=1,...,i Since Y [Dy| <i('') < 5050i < 100000, such
a choice can be made. It’s clear that t; —¢; ¢ D, 100 >4 > j > 1. So A; N A; = 0.

2. Find all pairs of positive integers (a,b) such that the number

a2

2ab? — b3 + 1

is also a positive integer.

Soln. Let

a2

S S — X
2ab? — b3 + 1

Then
a® —2kb%a+k(b* —1) =0

This discriminant D is the square of some integer d, i.e.,
D = (2b%k — b)* + 4k — b* = d°.

If 4k — b? = 0, we get

b b
a:2b2k—§ or 5

If 4k — b% > 0, we get
d* — (2b%k — b)* = 4k — b* > 2(20%k — 2b + 1),

ie.,

4k(b* — 1)+ (b* - 1) <0.
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This implies b = 1. If 4k — b < 0, then (2b%k — b)2 — d2 = b2 — 4k. But (2b%k — b)? —
(26%k — b — 1)2 = 2(2b%k — b) — 1. Since

2(26%k — b) — 1 — (b* — 4k) = b*(4k — 3) +2b(b — 1) + (4k — 1) > 0,
we get a contradiction and so there is no solution. So the solutions are:

(a,b) = (2k, 1), (k, 2k), (8k* — k, 2k)

3. Given is a convex hexagon with the property that the segment connecting the middle

points of each pair of opposite sides in the hexagon is ‘/7§ times the sum of those sides’
sum.

Prove that the hexagon has all its angles equal to 120°.

Soln. Let aq,,...,ag be vectors for the vertices. Then we know

(a1 + a2)/2 — (a1 + as5) /2| = V/(3)/2(Ja1 — az| + |as — as|) = /(3)/2(|a1 — a2 + a5 — aa|)

(with equality iff the two sides are parallel). So

(a1 — a1) + (a2 — as)] > v/(3)|(a1 — as) — (a2 — as)].

Let 71 = a1 — a4, 72 = az — as, 73 = a3 — ag (i.e the diagonals) We get

71+ 12| > V/(3)r1 — 12 (1)
and similarly

I7a + 73] > V/(3)|r2 — 73] (2)

1 — 73| > /(3)|r1 + 73] (3)

(note the sign changes here) with equality iff the corresponding sides are parallel. By
squaring (1) we get

1
ry-Te 2 4_1(‘“’2 + |ra]?).
So if x is the angle between r; and ro, we see that

1 |? 4 |ra|?

>
4lry|r2|

S 1
Ccos T =
- 2

(by AM-GM) with equality iff |ri| = |r2|. So 0 < x < 7/3 = 60°. Similarly angle between
ro and 73 is between 0 and 7/3 whereas angle between r1 and 73 is > 27 /3. So this can only
hold if all equalities hold. Therefore |ri| = |ro| = |r3|, and the diagonals intersect pairwise
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at 60° and opposite sides are parallel. Now let ABCDEF be the hexagon. ( Then draw a
line DG parallel to EB and equal to that segment, i.e., EDGB is a convex parallelogram.
So ED || BG but also ED || AB, so A, B,G are collinear. Then ZADG = 60° , since
DG || EB and AD intersects EB at 60°. Also AD = EB = DG. So AADG is equilateral.
So /DAG = ZDAB = 60°. Similarly ZDAF = 60°. So add them to get ZFAB = 120°.
Similarly for all the other angles.

4. Given is a cyclic quadrilateral ABC'D and let P, ), R be feet of the altitudes from D
to AB, BC' and C'A respectively. Prove that if PR = R(Q) then the interior angle bisectors
of ZABC and ZADC are concurrent on AC'.

Soln. The well-known ’Pedal Triangle Trick’ is "For any point D, let X,Y,Z be feet
of the altitudes from D to AB, BC,CA. Then, XZ = (DA - BC)/2r, etc, where r is the
circumradius of ABC.” The proof is very easy, since D, A,Y, Z lie on a circle with diameter
DA, by the law of sines, XZ = DAsin A= DA - BC/2r.

By PTT, PR = RQ implies DA - BC/2r = DC - AB/2r, so, CD/DA = BC/AB
implies the results.

5. Let z1 <xy <--- <z, be real numbers, n > 2.

(a) Prove the following inequality:

<Z|$z_$]|> STZ(IBZ—ZE]) .
5 ,J
(b) Prove that the equality in the inequality above is obtained if and only if the
sequence (zy) is an arithmetic progression.

Soln. The inequality is equivalent to

2 (n?-1)
(Z s — $j|> <5 > (=)
i<j i<j
Let L be the LHS and R be the sum on the RHS. Further, let a; = ;.1 —2x;,2=1,...,n—1.
Then
L=[(n—1)a; +2(n—2)ay+ -+ (n—1)lay,_1]?
n—1
R=Y [a} + (ai + aip1)® + -+ (@i + a1 + - + an-1)?]
i=1
Using the fact that 12422+ .. +k% = 2(’“;1)—1— (k"QH) and that (Z) + (Ztl)—i- . -l—(’f) = (’:j:ll),
we get, by Cauchy-Schwarz Inequality,

n*(n® —1) = 2 2 2
TXR—(;O +2° 4+ 4+ (n—1) ))XR
n—1

2
= (Z[lai +2(a; + aip1) + -+ (n—1)(a; + a1 + -+ +an71)>
=1
2
n
-
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Thus the inequality follows. Since equality holds iff (a1 +a2)/a1 = 2, (a1+a2+as)/a1) = 3,
etc, we see that inequality holds iff a3 = a; = -+ = a,—1, in other words, when the (zy)
is an AP.

6. Prove that for each given prime p there exists a prime ¢ such that n? —p is not divisible
by ¢ for each positive integer n.

Soln. Since
pP—1

S lpar T = p ] (mod )

there is a prime divisor ¢ of (p? — 1)/(p — 1) which is not congruent to 1 modulo p?. We
claim that ¢ has the desired properties. Assume, on the contrary, that there exists n such
that n”? = p (mod ¢). Then we have n?’ = p? =1 (mod q) by the definition of g. On
the other hand, from Fermat’s Little Theorem, n9~! =1 (mod ¢). Since p* { ¢ — 1, we
have (p?,q — 1) | p, which leads to n? = 1 (mod ¢). Hence we have p = 1 (mod q).
However, this implies 1 +p+---+p?~ =p (mod ¢). From the definition of ¢, this leads
top=0 (mod q), a contradiction.



