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1. Let ABC be an acute-angled triangle with AB 6= AC. The circle with diameter BC
intersects the sides AB and AC at M and N , respectively. Denote by O the midpoint of
the side BC. The bisectors of the angles BAC and MON intersect at R. Prove that the
circumcircles of the triangles BMR and CNR have a common point lying on the side BC.

Soln. The radical centre of the three circles is A. Thus the radical axis of circles BMR
and CNR is AR. Thus we only need to show that BMRL and CNRL are cyclic, where
L = AR ∧BC. We have

OM = ON and ∠NOR = ∠MOR ⇒ MR = RN.

Also ∠MAR = ∠NAR, AR = AR and MR = RN imply either (i) 4AMR ≡ 4ANR
which in turn implies that AM = AN (impossible as AB 6= AC); or (ii) ∠AMR+∠ANR =
180◦ which in turn implies that AMRN is cyclic. (This fact can also be obtained by noting
that the perpendicular bisector of MN and the angle bisector of ∠MAN meet at R.)
This then implies that ∠ARN = ∠AMN = ∠ACB = ∠ACL, whence RNCL is cyclic.
Similarly, RMBL is cyclic.
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Second soln. Denote by T the midpoint of MN . Since 4ABC and 4ANM are similar,
with respective medians AO and AT , we have ∠BAO = ∠CAT . Thus the bisector AR of
∠BAC also bisects ∠OAT . Therefore RT

RO = AT
AO . Furthermore, using the same fact again,

AT

AO
=

MN

BC
=

MT

BO
=

MT

MO
.

We conclude that MR bisects ∠OMN . Now ∠BMO = ∠B (O is the centre of the
circle (BCNM). Combined with ∠AMN = ∠C, this yields ∠OMN = ∠A, and hence
∠BMR = ∠B + ∠A/2 = ∠CLR. So B,L,R,M are concyclic. Likewise, C,L,R,N are
concyclic.
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2. Find all polynomials P (x) with real coefficients which satisfy the equality

P (a− b) + P (b− c) + P (c− a) = 2P (a + b + c)

for all triples a, b, c of real numbers such that ab + bc + ca = 0.

Soln. Put a = b = c = 0, we get 3P (0) = 2P (0) which implies P (0) = 0. Put
a = b = 0, we get P (−c) = P (c) for all real c. Thus the polynomial has only even powers:
P (x) =

∑k
m=1 a2mx2m.

Since the expression ab + bc + ca = 0 is homogeneous, we may assume that a = 1.
This yields b = −c/(1 + c). Thus a general solution is

a = 1 + t, b = −t, c = t + t2.

Let

A(n) = (a− b)n + (b− c)n + (c− a)n = (1 + 2t)n + (t2 + 2t)n + (t2 − 1)n

B(n) = 2(a + b + c)n = 2(t2 + t + 1)n
.

It is easily seen that by direct computation that A(2) = B(2) and A(4) = B(4). Now
consider n ≥ 6. Again direct computation shows that the coefficients of t2n and t2n−1 of
A(n) and B(n) are equal. The coefficient of t2n−2 of A(n) is 4

(
n
2

)
−

(
n
1

)
while that of B(n)

is 2
((

n
2

)
+

(
n
1

))
. It’s clear that the latter is strictly smaller than the former for n ≥ 6.

This shows that P (a− b) + P (b− c) + P (c− a) and 2P (a + b + c), as polynomials in t, are
not identical if k ≥ 3 (the terms in t4k−2 are different) and are identical if k ≤ 2. So the
answer is P (x) = ax2 + bx4, where a, b are real numbers.

3. Define a hook to be a figure made up of six unit squares as shown in the diagram
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or any of the figures obtained by applying rotations and reflections to this figure.

Determine all m× n rectangles that can be covered with hooks so that

(i) the rectangle is covered without gaps and without overlaps;

(ii) no part of a hook covers area outside the rectangle.

Soln. For any hook A, there is unique hook B covering the “inside” square of A with
one of its “endmost” squares. In turn, the “inside” square of B must be covered by an
“endmost” square of A. Thus, the hooks must come in pairs, in two different ways as
shown in the figure below. We call such a pair a tile.
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Depending on how the tile is placed, there are two cases:

(a) The column lengths of the tile are odd (3) while the row lengths are even (2 or 4)
as shown in the figure above.

(b) The column lengths of the tile are even while the row lengths are odd.

Suppose a tiling a possible, then 12 | mn. Also it is easy to see that m,n 6= 1, 2, 5.
We shall prove that one of m,n is a multiple of 4. If the number of tiles is even, then
24 | mn and thus one of m,n is divisible by 4 and we are done. Thus we may assume that
the number of tiles is odd. So one of (a) and (b) must occur an odd number of times. By
symmetry, we may assume that (a) occurs an odd number of times.

Colour black every 4th column from the left. Each type (a) tile must intersect one
black column. Since each type (b) tile can cover an even number of black squares, we see
that the total number of black squares is odd. Thus the column length is odd, i.e, one of
m,n is odd and so the other is divisible by 4.

Conversely, suppose 12 | mn, 4 divides one of m,n, and none of the sides is 1,2, or 5.
If 4 | m and 3 | n, then we can easily cover the rectangle with the 3× 4 tiles.

If 12 | m and 3 - n, then write n = 3p + 4r. We can then partition the rectangle into
m× 3 and m× 4 rectangles. So a covering is again possible.

4. Let n ≥ 3 be an integer. Let t1, t2, . . . , tn be positive real numbers such that

n2 + 1 > (t1 + t2 + · · ·+ tn)
(

1
t1

+
1
t2

+ · · ·+ 1
tn

)
.

Show that ti, tj , tk are side lengths of a triangle for all i, j, k with 1 ≤ i < j < k ≤ n.

Soln. By symmetry if suffices to show that t1 < t2 + t3. We have

RHS = n +
∑

1≤i<j≤n

ti
tj

+
tj
ti

= n + t1

(
1
t2

+
1
t2

)
+

1
t1

(t2 + t3) +
∑

(i,j)6=(1,2),(1,3)
1≤i<j≤n

(
ti
tj

+
tj
ti

)

By AM-GM,
1
t2

+
1
t2
≥ 2√

t2t3
, t2 + t3 ≥ 2

√
t2t3,

ti
tj

+
tj
ti
≥ 2.

Thus, setting x = t1/
√

t2t3 > 0, we get

n2 + 1 > n + 2x +
2
x

+ 2
[(

n

2

)
− 2

]
= 2x +

2
x

+ n2 − 4.

Hence 2x2 − 5x + 2 < 0, which implies that 1/2 < x < 2. Therefore t1 < 2
√

t2t3 ≤ t2 + t3
as required.
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5. In a convex quadrilateral ABCD the diagonal BD bisects neither the angle ABC nor
the angle CDA. The point P lies inside ABCD and satisfies

∠PBC = ∠DBA and ∠PDC = ∠BDA.

Prove that ABCD is a cyclic quadrilateral if and only if AP = CP .

Soln.
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Since P is in the interior of ABCD, we have ∠DBA < ∠DBC iff ∠BDA < ∠BDC. So
we may assume that P lies in triangles ACD and BCD. Also let ∠PBC = ∠DBA = y
and ∠PDC = ∠BDA = x.

Assume that ABCD is cyclic. Let the lines BP and DP meet AC at K and L,
respectively. Then ∠ACB = ∠ADB = x, ∠ABD = ∠ACD = y. Therefore ∠PLK =
x + y = ∠PKL, whence PK = PL. Also 4ADL ' 4BDC and 4ABD ' 4KBC.
Hence

AL

BC
=

AD

BD
=

KC

BC
,

yielding AL = KC. Combine with the conclusions above, this implies that 4ALP ≡
4CKP . Hence AP = CP .

Conversely, assume that AP = CP . Let the circumcircle of BCP meet the lines CD
and DP again at X and Y , respectively. The 4ADB ' 4PDX. Therefore DA/DP =
DB/DX and so 4ADP ' 4BDX. Therefore

BX

AP
=

BD

AD
=

XD

PD
.

Moreover, 4DPC ' 4DXY , which gives Y X
CP = XD

PD . Since AP = CP , we have BX =
Y X. Hence

∠DCB = ∠XY B = ∠XBY = ∠XPY = x + y = 180◦ − ∠BAD.

This implies that ABCD is cyclic.
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6. We call a positive integer alternating if every two consecutive digits in its decimal
representation are of different parity.

Find all positive integers n such that n has a multiple which is alternating.

Soln. (Official) A positive integer is alternating iff it is not a multiple of 20.

The last two digits of a multiple of 20 are both even and so it can’t be alternating.

For the other integers, there are several cases.

a) Every power of 2 has an alternating multiple with an even number of digits.

Proof: If suffices to construct an infinite sequence {an} such that

an ≡ n + 1 (mod 2), 22n−1 ‖ a2n−1a2n−2 . . . a1; 22n+1 ‖ a2na2n−1 . . . a1

for each n. (Here for any positive integers a, b, c, ab ‖ c means b is the largest integer such
that ab | c.) Start with a1 = 2, a2 = 7. If the sequence is constructed up to a2n, set
a2n+1 = 4. Then a2n+1 is even, and

22n+1 ‖ a2n+1 . . . a1 = 4 · 102n + a2n . . . a1,

because 22n+1 ‖ a2n . . . a1 by the induction hypothesis and 22n+2 ‖ 4 · 102n. Denote
a2n+1 . . . a1 = 22n+1A, with A odd. Now a2n+2 must be odd and such that

22n+3 ‖ a2n+2 . . . a1 = a2n+2102n+1 + a2n+1 . . . a1 = 22n+1[a2n+252n+1 + A],

which holds whenever 5a2n+2 + A ≡ 4 (mod 8). The solutions of the last congruence are
odd, since A is odd. In addition, a solution a2n+2 can be chosen from {0, . . . , 7}. The
construction is complete.

b) Each number of the form 2 · 5n has an alternating multiple with an even number
of digits.

Proof: We construct an infinite sequence {bn} such that

bn ≡ n + 1 (mod 2) and 2 · 5n | bn . . . b1

for each n. Start with b1 = 0 and b2 = 5. Suppose b1, . . . , bn have been constructed. Let
bn . . . b1 = 5`B, where ` ≥ n and 5 - B. The next digit bn+1 must be such that bn+1 ≡ n+2
(mod 2) and 5n+1 divides

bn+1 . . . b1 = bn+110n + bn . . . b1 = 5n[bn+12n + 5`−nB].

The latter is true whenever bn+12n + B is divisible by 5. Now the system of simultaneous
congruence bn+1 ≡ n + 2 (mod 2), bn+12n + B ≡ 0 (mod 5) has a solution by Chinese
remainder theorem, since 2n and 5 are coprime. Also, a solution bn+1 can be chosen in
{0, . . . , 9}, as needed.

For the general case n = 2α5βk, where k is not a multiple of 5 or 2 and α ≤ 1. First
we note that 2α5β has an alternating multiple M with an even number, say 2m, of digits.
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Thus all numbers of the form MM . . .M are also alternating. We claim that one of them
is a multiple of n. Consider the numbers

C` = 1 + 102m + · · ·+ 102m(`−1), ` = 1, 2, . . . , k + 1

There exist 1 ≤ i < j ≤ k+1 such that Ci ≡ Cj (mod k). Hence k | Cj−Ci = Cj−i102mi.
Since 10 is coprime to k, it follows that k | Cj−i. Now it is straightforward that Cj−i×M ,
a number of the form MM . . .M is an alternating multiple of n.

Soln. Solution by Joel Tay, (RJC). The answer is every positive integer n which is
not a multiple of 20. If 20 divides n, then the last 2 digits of any multiple of n are even,
hence cannot be alternating. If 20 - n, then either (1) 2 ‖n, (2) 2 - n or (3) 22 | n, 5 - n.
We consider these 3 cases separately.

Case (1): 2 ‖n. We can reduce this to case (2) as follow. In this case, n/2 is odd. By
case (2), an alternating multiple of n/2 is obtained. If this number is even, then it is an
alternating multiple of n. If it is odd, multiplying by 10 (that is adding a zero to its unit
place) gives an alternating multiple of n.

Case (2a): 2 - n and 5 - n. That is (n, 10) = 1. Consider the number x = 1212 · · · 12,
where the digits ‘12’ are repeated k times. Here k is taking to be large, say larger than
nφ(n), where φ is the Euler function. Since (2, n) = 1, there exists an integer y, 1 ≤ y ≤ n
such that 2y ≡ −x (mod n). On the other hand, (10, n) = 1 implies that 10φ(n) ≡ 1
(mod n). Thus 2× 10φ(n) ≡ 2 (mod n) and 2× 10mφ(n) ≡ 2 (mod n) for all integer m.
Therefore,

a = 2+2×10φ(n)+2×102φ(n)+ · · ·+2×10(y−1)φ(n) ≡ 2+2+ · · ·+2 ≡ 2y ≡ −x (mod n).

That is a + x is a multiple of n. Note that x is alternating and the digits of a are all
even and the length of a is shorter than the length of x. Thus a + x is alternating.

Case (2b): 2 - n and 5c ‖n, where c is a positive integer. We shall first find an
alternating multiple of 5c having at most c digits. To do so, we construct inductively
an alternating multiple am−1 · · · a2a1a0 of 5m for m = 1, 2, . . . , c. Take a0 = 5, a1 = 2.
Suppose 5m divides the alternating number am−1 · · · a2a1a0.

First note that 0× 10m, 2 × 10m, 4 × 10m, 6 × 10m, 8 × 10m are distinct mod 5m+1

and 5m divides all of them. Similarly, 1 × 10m, 3 × 10m, 5 × 10m, 7 × 10m, 9 × 10m are
also distinct mod 5m+1 and 5m divides all of them. So there exists exactly one number
among 0×10m, 2×10m, 4×10m, 6×10m, 8×10m or exactly one number among 1×10m,
3 × 10m, 5 × 10m, 7 × 10m, 9 × 10m where we denote it by am × 10m such that it is the
additive inverse of am−1 · · · a2a1a0 (mod 5m+1). In other words, amam−1 · · · a2a1a0 is
divisible by 5m+1. Furthermore the parity of am can be chosen to be different from that
of am−1, hence ensuring amam−1 · · · a2a1a0 is alternating. This completes the proof that
there is an alternating multiple ac−1 · · · a2a1a0 of 5c having at most c digits.
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Now consider the integer n. First choose a positive integer q such that qφ(n/5c) >
c. Note that 5c divides any number ending with ac−1 · · · a2a1a0. As such consider the
following number.

x =
{

101010 · · · 10ac−1 · · · a2a1a0 if ac−1 is odd
010101 · · · 01ac−1 · · · a2a1a0 if ac−1 is even

Here there are k ‘01’s or ‘10’s in x. Also k is chosen to be sufficiently large, say larger than
(q + n)φ(n/5c).

As noted before, 5c divides x and x is alternating. Since (2, n/5c) = 1, there exists an
integer y with 1 ≤ y ≤ n/5c such that 2y ≡ −x (mod n/5c).

Also 2× 10mφ(n/5c) ≡ 2 (mod n/5c) for all integers m. Thus

a = 2×10qφ(n/5c) +2×10(q+1)φ(n/5c) + · · ·+2×10(q+y−1)φ(n/5c) ≡ 2+2+ · · · 2 ≡ 2y ≡ −x

(mod n/5c). In decimal representation, a = 200 · · · 0200 · · · 0 · · · 200 · · · 0, where each block
of ‘200 · · · 0’ has at least c zeros since qφ(n/5c) > c. Thus a + x is alternating as the
addition of a to x does not affect the first c digits of x, all digits of a are even and x is
long enough to have more digits than a. Therefore a + x is alternating and divisible by
n/5c. Since a + x is also divisible by 5c and (52, n/5c) = 1, it is divisible by n.

Case (3): 2c ‖n, where c ≥ 2 and 5 - n. We first construct an alternating multiple of
2c. Take x = 1010 · · · 10 or 0101 · · · 010, so that it has c digits. Note that 2 ‖x. (That is
x/2 is odd.) Now we use induction to construct an alternating multiple of 2m (2 ≤ m ≤ c)
of the form x + am−2am−3 · · · a0, where all digits a0, a1, . . . , am−2 are even.

For m = 2, take a0 = 6. Then 22 divides 101 · · · 16 or 010 · · · 016. Suppose 2m divides
x + am−2am−3 · · · a0. Note that 0 × 10m−1 and 2 × 10m−1 are distinct mod 2m+1 and
that 2m divides both of them. Exactly one of them is congruent to −x− am−2am−3 · · · a0

(mod 2m+1). Denote that one by am−1 × 10m−1. Then x + am−1am−2 · · · a0 = x +
am−2am−3 · · · a0 + am−1 × 10m−1 is divisible by 2m+1. Since a0 = 6 and a1, . . . , am−1

are either 0 or 2, the number x + am−1am−2 · · · a0 is an alternating multiple of 2m+1.
Consequently, we have constructed an alternating multiple of 2c having at most c digits.

Now we return to the case n = 2ck, where (2, k) = 1, (5, k) = 1 and c ≥ 2. Denote
the alternating multiple of 2c obtained above by bc−1bc−2 · · · b0. Consider

x =
{

101010 · · · 10bc−1 · · · b2b1b0 if bc−1 is odd
010101 · · · 01bc−1 · · · b2b1b0 if bc−1 is even

where ‘10’ or ‘01’ is repeated k times and k is chosen sufficiently large, say larger (q− n−
1)φ(n/2c) with qφ(n/2c) > c. Note that x is alternating and is divisible by 2c.

Let y be an integer with 1 ≤ y ≤ n/2c such that 2y ≡ −x (mod n/2c). As before,

a = 2×10qφ(n/2c) +2×10(q+1)φ(n/2c) + · · ·+2×10(2+y−1)φ(n/5c) ≡ 2+2+ · · · 2 ≡ 2y ≡ −x

(mod n/2c). That is a + x is divisible by n/2c and it is alternating. Since qφ(n/2c) > c,
the first c digits of a + x is bc−1bc−2 . . . b0 and thus a + x is divisible by 2c. Therefore it is
an alternating multiple of n.
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Solution by Andre Kueh, (RJC). Let n = 2a5bk, where a and b are non-negative
integers and (k, 2) = 1, (b, 5) = 1. Since (10, k) = 1, there exists a positive integer m such
that 10m ≡ 1 (mod k). We first prove the following lemma.

Lemma There exists an alternating number j with 2m digits and an odd digit at the
unit place such that (j, k) = 1. Furthermore there exists a positive integer α such that
αj ≡ 1 (mod k).

Proof Let j = (102m − 1)/99 + 2`102m−1, ` = 1, 2, 3. In other words, j is the
2m-digit number η10101 · · · 01, where η = 2, 4, 6. As (102m − 1, 102m−1) = 1, we have
((102m − 1)/99, 102m−1) = 1 so that the common factors of (102m − 1)/99 and 2`102m−1

are factors of 2`. Since (102m − 1)/99 is odd, the common factors of (102m − 1)/99 and
2`102m−1 is either 1 or 3. Thus the common factors of (102m− 1)/99 and (102m− 1)/99+
2`102m−1 is either 1 or 3. Consequently, (102m − 1, (102m − 1)/99 + 2`102m−1) is a factor
of 99 × 3 = 33 × 11. Since there are 3 possible choices for `, we may choose ` such that
j = (102m − 1)/99 + 2`102m−1 is not divisible by both 3 and 11. Now for this choice of `,
we have (j, 102m − 1) = 1. Thus (j, k) = 1 as k divides 10m − 1. Since (j, k) = 1, there
exists α such that αj ≡ 1 (mod k). This completes the proof of the lemma.

Note that j has 2m digits and a finite number of concatenations of j is still an alter-
nating number.

Case (1): a = b = 0. That is n = k. Let x = jj · · · j, where there are n copies of
j. In other words, x = j + j × 102m + · · · + j×2m(n−1). Since n(= k) divides 2m − 1, we
have 102m ≡ 1 (mod n). Thus x ≡ j + j + · · · + j = nj ≡ 0 (mod n). That is x is an
alternating multiple of n.

Case (2): a ≥ 2, b = 1. This impels that n is a multiple of 20. As the last two digits
of any multiple of 20 are always even, n cannot have an alternating multiple.

Case (3): a = 0, b ≥ 1. That is n = 5bk. First we construct inductively an alternating
multiple of 5b having at least b digits whose unit digit is odd. When b = 1, take the number
5 itself. Suppose ab−1ab−2 · · · a0 is an alternating multiple of 5b. Then ab−1ab−2 · · · a0 ≡
c× 5b (mod 5b+1). Note that 0× 10b, 2× 10b, 4× 10b, 6× 10b, 8× 10b are distinct residue
classes modulo 5b+1, so do 1×10b, 3×10b, 5×10b, 7×10b, 9×10b. We may pick an additive
inverse ab × 10b of c× 5b modulo 5b+1 such that ab and ab−1 are of opposite parity. Then
abab−1 · · · a0 ≡ ab × 10b + c× c× 10b ≡ 0 (mod 10b+1), giving an alternating multiple of
5b+1.

Note that adding any arbitrary digits to the front of this alternating multiple of 5b will
still be a multiple of 5b. Thus we may add random odd and even digits to this alternating
multiple of b taking care to ensure that it remains alternating until we obtain an alternating
multiple of 5b having 2pm digits for some positive integer p. Let this alternating multiple
of 5b be y. Note that the leftmost digit of y is even. Now let q ≡ −y (mod k), where
q ∈ {1, 2, . . . , k}. Consider the number x = jj · · · jjy. Here the number x has qα copies
of j, where α is the number provided by the lemma. As 10m ≡ 1 (mod k), we have
x ≡ qαj + y ≡ 0 (mod k). Since x is divisible by 5b, it is an alternating multiple of n.

Case (4): a ≥ 1, b = 0. That is n = 2ak. First we construct inductively an alternating
multiple of 2a having at least a digits. Let 2a = as−1as−2 · · · a1a0. The unit digit a0 is
always even. If a1 is also even, we may add as−1as−2 · · · a1a0 to itself a number of times
until a carry occurs in the 10th place. Then the digit at the 10th place of the resulting
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number is odd. In this way, we obtain a multiple of 2a of the form prpr−1 · · · p1p0 such
that at least the first 2 right-most digits are of opposite parity. Now suppose pµ is the first
non-alternating digit in the number prpr−1 · · · p1p0. We consider the following two cases.

Suppose both pµ and pµ−1 are odd. We add a certain multiple of asas−1 · · · a1a000 · · · 0
to prpr−1 · · · pµpµ−1 · · · p1p0, where there are (µ−1) zeros in the first number, until a carry
occurs at the 10µth place. Then the resulting multiple of 2a will be alternating starting
from right to left up to the (µ + 1)th digit.

Suppose both pµ and pµ−1 are even. We add a certain multiple of asas−1 · · · a1a000 · · · 0
to prpr−1 · · · pµpµ−1 · · · p1p0, where there are (µ − 1) zeros in the first number, until the
first time no carry occurs at the 10µth place. Again, the resulting multiple of 2a will be
alternating starting from right to left up to the (µ + 1)th digit.

Continue the above procedure until the alternating multiple of 2a so obtained has at
least a digits. Then the number obtained by taking the first a digits of this multiple of
2a is again an alternating multiple of 2a. That is we discard all the digits after the 10a

place. Now as in case (3), we may add random digits to the front of this number until it
has 2pm + 1 digits for some positive integer p. Denote the resulting alternating multiple
of 2a by y. Note that both the first and last digits of y are even.

Since (10, k) = 1 (mod k), there exists t ∈ {1, 2, . . . , k} such that 10t ≡ 1 (mod k).
Also let q ∈ {1, 2, . . . , k} be such that q ≡ −y (mod k).

Consider the number x = jj · · · jjy. Here the number x has tqα copies of j, where α
is the number provided by the lemma. Note that x is alternating as the unit digit of j is
odd. As 10m ≡ 1 (mod k) so that 102mr+1 ≡ 10 (mod k) for any positive integers r, we
have x ≡ 10tqαj + y ≡ q + y ≡ 0 (mod k). Since x is divisible by 2a, it is an alternating
multiple of n = 2ak.

Case (5): a = 1, b ≥ 1. By case (3), there is an alternating multiple arar−1 · · · a0 of
n/10, where a0 is odd. Then arar−1 · · · a00 is an alternating multiple of n.

Concluding all, we have shown that a positive integer n is alternating if and only if it
is not a multiple of 20.
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