
37th International Mathematical Olympiad

Solutions

Problem 1

We shall work on the array A of lattice points de�ned by

A = f(i; j) 2 Z
2 : 0 � i � 19; 0 � j � 11g:

Our task is to move from (0; 0) to (19; 0) via the points of A such that each move

has length
p
r. Thus for each move of the form (x; y)! (x + a; y + b), we must

have a2 + b2 = r.

(a) If r is even, then for each solution (a; b) of a2 + b2 = r, the sum a+ b is even,

so for each lattice point (x; y) reached from (0; 0), the parity of x+y must be the
same as that of 0 + 0; that is, x + y must be even. It follows that (19; 0) cannot
be reached from (0; 0).

If r is a multiple of 3, then for each solution (a; b) of a2 + b2 = r, both a and b

must be multiples of 3; this holds because �1 is not a square modulo 3. Thus for
each lattice point (x; y) reached from (0; 0), x and y must both be multiples of 3,
and so in this case too (19; 0) cannot be reached from (0; 0).

(b) Consider the case r = 73 = 82 + 32. Let a; b; c and d represent, respectively,

the number of moves of the types �(8; 3), �(8;�3), �(3; 8) and �(3;�8). (More
precisely, a is the number of moves of type (8; 3) minus the number of moves of
type (�8;�3); similarly for the others.) Since we have to reach (19; 0) from (0; 0),
we have

8(a+ b) + 3(c + d) = 19; 3(a� b) + 8(c� d) = 0:

Taking (a + b; c + d) = (2; 1) as a trial solution of the �rst equation, and (a �
b; c� d) = (�8; 3) as a trial solution of the second, we �nd that

a = �3; b = 5; c = 2; d = �1:

We now attempt a solution with three moves of type (�8;�3), �ve moves of type
(8;�3), two moves of type (3; 8) and one of type (�3; 8). The constraint is that
we must keep within the boundaries of the array. After some experimentation,

the following route emerges:

(0; 0) ! (8; 3) ! (11; 5) ! (19; 2) ! (16; 10) ! (8; 7) ! (0; 4) ! (8; 1) !
(11; 9) ! (3; 6) ! (11; 3) ! (19; 0):

Note that the solution (a+ b; c+ d) = (2; 1); (a� b; c� d) = (8;�3), which gives

a = 5; b = 3; c = 1 and d = 2, also yields a route:



(0; 0) ! (8; 3) ! (16; 6) ! (8; 9) ! (5; 1) ! (13; 4) ! (5; 7) ! (13; 10) !
(16; 2) ! (8; 5) ! (16; 8) ! (19; 0):

(c) If r = 97, then since the only way of writing 97 as the sum of two squares

is 97 = 92 + 42, each of the moves must consist of one of the vectors (�9;�4),

(�4;�9). Let the points of A be partitioned as B [ C in the collowing manner:

B = f(i; j) 2 Z
2 : 0 � i � 19; 4 � j � 7g; C = A n B:

Then it can be veri�ed that moves of the type (�9;�4) always take us from

points in B to points in C and vice versa, while moves of type (�4;�9) always

take us from points in C to points in C. (Note that it is not possible to go from

one point in B to another point in B in one step.)

Each move of the type (�9;�4) changes the parity of the x-coordinate, so since

we have to go from (0; 0) to (19; 0), and odd number of such moves is required.
Each such move takes us from B to C or vice versa, so since the starting point
(0; 0) is in C, we shall end up at a point in B. However, (19; 0) 2 C. It follows
that the required sequence of moves does not exist.

Problem 2

Lemma: Let the feet of the perpendiculars from P to BC, CA and AB be X, Y
and Z respectively. Then (i) Y Z = PA sinA (ii) angleY XZ = 6 BPC � 6 A.

This is easy to see via an examination of the three cyclic quadrilaterals AZPY ,
BXPZ and CY PX.

Let BD and CE meetAP in Q and R respectively. By the angle bisector theorem,
AQ=QP = AB=BP and AR=RC = AC=CP . To show that Q;R coincide, it

su�ces to show that AB=BP = AC=CP . Now,

AB

BP
=

AC

CP
() AB � CP = AC �BP () CP � sinC = BP � sinB
() XY = XZ (using the Lemma).

But we are given that 6 APB � 6 C = 6 APC � 6 B. This implies that 6 XZY =
6 XY Z (also by the Lemma), so XY = XZ as desired.

Problem 3

Putting m = n = 0 we obtain f(0) = 0 and hence f(f(n)) = f(n) for all n 2 N0.

Thus the given functional equation is equivalent to

f(m+ f(n)) = f(m) + f(n); f(0) = 0:
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We also observe that if f(x) is not the zero function then f has non-zero �xed

points. Let a be the least non-zero �xed point of f . If a = 1 then it is easy to

check that f(2) = 2 and by induction that f(n) = n for all n 2 N0.

Suppose a > 0. Again by induction f(ka) = ka for all k � 1. We shall show that

the �xed points of f are all of the form ka for some k � 1. First note that the

sum of two �xed points of f is itself a �xed point. Let b be an arbitrary �xed

point of f . Choose non-negative integers q; r such that b = aq + r; 0 � r < a.

Then we get

b = f(b) = f(aq + r) = f(r + f(aq)) = f(r) + f(aq) = f(r) + aq:

It follows that f(r) = r and since r < a we must have r = 0. This proves the

claim that the �xed points are all of the form ka. Since the set ff(n) : n 2 N0g
is a set of �xed points of f it follows in particular that f(i) = ani for each i < a,
with n0 = 0 and ni 2 N0.

Take any positive integer n and write it as n = ka + i where 0 � i < a. Using
the functional equation we obtain

f(n) = f(i+ ka) = f(i+ f(ka)) = f(i) + ka = nia+ ka = (ni + k)a:

We verify that such an f satis�es the given functional equation: take m = ka+

i; n = la+ j; 0 � i; j < a. Then

f(m + f(n)) = f(ka+ i+ f(la+ j)) = f((k + l + nj)a+ i)

= (k + l + nj + ni)a

= f(m) + f(n)

Thus if f is not identically zero, then f has the following general form: let a 2 N

and n1; n2; : : : ; na�1 2 N0 be chosen arbitrarily; then

f(n) =

��
n

a

�
+ ni

�
a:

Problem 4

Let 15a + 16b = r2; 16a� 15b = s2, where r; s 2 N. We now obtain:

r4 + s4 = (152 + 162)(a2 + b2) = 481(a2 + b2):

Note that 481 = 13�37. We now use the fact that �1 is not a fourth power either
modulo 13 or modulo 37. (To see why this holds, note that the congurence �1 �
x4 (mod 13) for some x 2 N leads via Fermat's theorem, to (�1)3 � 1 (mod 13),
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which is false; likewise, the congurence �1 � x4 (mod 37) for some x 2 N leads

to (�1)9 � 1 (mod 37), which too is false.)

Since r4 + s4 � 0 (mod 13), either r � s � 0 (mod 13) or r 6� 0; s 6� 0 (both

modulo 13). The latter possibility cannot occur because �1 is not a fourth power

modulo 13; therefore r � s � 0 (mod 13), and similarly r � s � 0 (mod 37).

Therefore r and s are both multiples of 481, and so r � 481; s � 481. It is easy

to chech that r = s = 481 is realizable: we obtain

a = 481 � 31; b = 481:

Thus the required answer is 4812.

Problem 5

Let a; b; c; d; e and f denote the lengths of the sides AB, BC, DE, EF and FA

respectively. Note that the opposite angles of the hexagon are equal ( 6 A = 6 D,
6 B = 6 E, 6 C = 6 F ). Draw perpendiculars as follows: AP ? BC, AS ? EF ,
DQ ? EF . Then PQRS is a rectangle and BF � PS = QR. Therefore 2BF �
PS +QR, and so

2BF � (a sinB + f sinC) + (c sinC + d sinB):

Similarly,
2DB � (c sinA+ b sinB) + (e sinB + f sinA);

2FD � (e sinC + d sinA) + (a sinA+ b sinC):

Next, the circumradii of the triangles FAB, BCD and DEF are related to BF ,
DB and FD as follows:

RA =
BF

2 sinA
; RC =

DB

2 sinC
; quadRE =

FD

2 sinB
:

We obtain, therefore,

4(RA +RC +RE) � a

�
sinB

sinA
+

sinA

sinB

�
+ b

�
sinB

sinC
+

sinC

sinB

�
+ � � �

ge 2(a+ b+ � � �) = 2P;

and so RA +RB +RC � P=2, as required. Equality holds i� 6 A = 6 B = 6 C and
BF ? BC; : : :; that is, i� the hexagon is regular.
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Problem 6

We �rst remark that there is no loss in taking p and q to be coprime; for, if p; q

have a common factor d > 1, then we can reword the problem in terms of the

quantities p0 = p=d, q0 = q=d, x0i = xi=d.

Let there be k indices i 2 f1; 2; : : : ; ng such that xi�xi�1 = p; then the number of

indices i 2 f1; 2; : : : ; ng such that xi�xi�1 = �q is n�k. Since xn = x0 = 0, we see

that kp = (n�k)q, and since p; q are coprime this implies that k = aq; n�k = ap

for some positive integer a. It follows that n = a(p+ q), and since n > p+ q, we

have a > 1.

Let yi = xi+p+q � xi for i 2 f0; 1; : : : ; n � p � qg. Since n > p + q, there is more

than one yi. We shal show that at least one of the yi is 0, which will establish the

stated claim. (In fact, this establishes a stronger statement.)

For each i, let Si denote the set of indices fi+1; i+2; : : : ; i+p+ qg. Let r be the
number of j 2 Si for which xj � xj�1 = p; then the number of j 2 Sj for which
xj � xj�1 = �q is p + q � r. Summing these equalities over all j 2 Si, we obtain

yi = rp � (p + q � r)q = (p + q)(r� q):

Thus yi is a multiple of (p+ q) for each i. Now consider the expression yi+1 � yi:

yi+1 � yi = (xi+p+q+1 � xi+1)� (xi+p+q � xi)

= (xi+p+q+1 � xi+p+q)� (xi+1 � xi)

Since each bracketed term is p or �q, it follows that yi+1 � yi is 0 or pm(p + q).
Next, consider the relation:

y0 + yp+q + y2(p+q) + � � �+ yn�p�q = 0:

This shows that the yi's are neither all positive or all negative. Thus in the
sequence

y0; y1; y2; : : : ; yn�p�q�1; yn�p�q;

there exists two adjacent y's that are not of the same sign. Since each yi is a
multiple of (p + q), and since the di�erence between adjacent yi's is always 0 or
�(p+ q), it follows that some yi equals 0.
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