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1. Let A be a 101-element subset of the set S = {1, 2, 3, . . . , 1000000}. Prove that there
exist numbers t1, t2, . . . , t100 in S such that the sets

Aj = {x + tj | x ∈ A} for each j = 1, 2, . . . , 100

are pairwise disjoint.

Soln. Let D = {x − y | x, y ∈ A, x > y}. If Ai ∩ Aj 6= ∅, then there exist x, y ∈ A, such
that x + ti = y + tj or 0 6= ti − tj = y − x ∈ D (without loss of generality, assume that
y > x.

Take t1 = 1 and choose the smallest t2 ∈ S such that t2 6∈ D1 = {x + t1 | x ∈ D}.
In general, if t1, . . . , ti, i < 100 has been chosen, choose the smallest ti+1 ∈ S such that
ti+1 6∈ Dk = {x + tk | x ∈ D}, k = 1, . . . , i. Since

∑
|Dk| ≤ i

(
101
2

)
≤ 5050i < 100000, such

a choice can be made. It’s clear that ti − tj 6∈ D, 100 ≥ i > j ≥ 1. So Ai ∩Aj = ∅.

2. Find all pairs of positive integers (a, b) such that the number

a2

2ab2 − b3 + 1

is also a positive integer.

Soln. Let
a2

2ab2 − b3 + 1
= k.

Then
a2 − 2kb2a + k(b3 − 1) = 0

This discriminant D is the square of some integer d, i.e.,

D = (2b2k − b)2 + 4k − b2 = d2.

If 4k − b2 = 0, we get

a = 2b2k − b

2
or

b

2

If 4k − b2 > 0, we get

d2 − (2b2k − b)2 = 4k − b2 ≥ 2(2b2k − 2b + 1),

i.e.,
4k(b2 − 1) + (b2 − 1) ≤ 0.

1



This implies b = 1. If 4k − b2 < 0, then (2b2k − b)2 − d2 = b2 − 4k. But (2b2k − b)2 −
(2b2k − b− 1)2 = 2(2b2k − b)− 1. Since

2(2b2k − b)− 1− (b2 − 4k) = b2(4k − 3) + 2b(b− 1) + (4k − 1) > 0,

we get a contradiction and so there is no solution. So the solutions are:

(a, b) = (2k, 1), (k, 2k), (8k4 − k, 2k)

3. Given is a convex hexagon with the property that the segment connecting the middle
points of each pair of opposite sides in the hexagon is

√
3

2 times the sum of those sides’
sum.

Prove that the hexagon has all its angles equal to 120◦.

Soln. Let a1, , . . . , a6 be vectors for the vertices. Then we know

|(a1 + a2)/2− (a4 + a5)/2| =
√

(3)/2(|a1 − a2|+ |a4 − a5|) ≥
√

(3)/2(|a1 − a2 + a5 − a4|)

(with equality iff the two sides are parallel). So

|(a1 − a4) + (a2 − a5)| ≥
√

(3)|(a1 − a4)− (a2 − a5)|.

Let r1 = a1 − a4, r2 = a2 − a5, r3 = a3 − a6 (i.e the diagonals) We get

|r1 + r2| ≥
√

(3)|r1 − r2| (1)

and similarly

|r2 + r3| ≥
√

(3)|r2 − r3| (2)

|r1 − r3| ≥
√

(3)|r1 + r3| (3)

(note the sign changes here) with equality iff the corresponding sides are parallel. By
squaring (1) we get

r1 · r2 ≥
1
4
(|r1|2 + |r2|2).

So if x is the angle between r1 and r2, we see that

cos x ≥ |r1|2 + |r2|2

4|r1||r2|
≥ 1

2

(by AM-GM) with equality iff |r1| = |r2|. So 0 ≤ x ≤ π/3 = 60◦. Similarly angle between
r2 and r3 is between 0 and π/3 whereas angle between r1 and r3 is ≥ 2π/3. So this can only
hold if all equalities hold. Therefore |r1| = |r2| = |r3|, and the diagonals intersect pairwise
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at 60◦ and opposite sides are parallel. Now let ABCDEF be the hexagon. ( Then draw a
line DG parallel to EB and equal to that segment, i.e., EDGB is a convex parallelogram.
So ED ‖ BG but also ED ‖ AB, so A,B,G are collinear. Then ∠ADG = 60◦ , since
DG ‖ EB and AD intersects EB at 60◦. Also AD = EB = DG. So 4ADG is equilateral.
So ∠DAG = ∠DAB = 60◦. Similarly ∠DAF = 60◦. So add them to get ∠FAB = 120◦.
Similarly for all the other angles.

4. Given is a cyclic quadrilateral ABCD and let P , Q, R be feet of the altitudes from D
to AB, BC and CA respectively. Prove that if PR = RQ then the interior angle bisectors
of ∠ABC and ∠ADC are concurrent on AC.

Soln. The well-known ’Pedal Triangle Trick’ is ”For any point D, let X, Y, Z be feet
of the altitudes from D to AB,BC, CA. Then, XZ = (DA · BC)/2r, etc, where r is the
circumradius of ABC.” The proof is very easy, since D,A, Y, Z lie on a circle with diameter
DA, by the law of sines, XZ = DA sinA = DA ·BC/2r.

By PTT, PR = RQ implies DA · BC/2r = DC · AB/2r, so, CD/DA = BC/AB
implies the results.

5. Let x1 ≤ x2 ≤ · · · ≤ xn be real numbers, n > 2.
(a) Prove the following inequality:( ∑

i,j

|xi − xj |
)2

≤ 2(n2 − 1)
3

∑
i,j

(xi − xj)2.

(b) Prove that the equality in the inequality above is obtained if and only if the
sequence (xk) is an arithmetic progression.

Soln. The inequality is equivalent to( ∑
i<j

|xi − xj |
)2

≤ (n2 − 1)
3

∑
i<j

(xi − xj)2.

Let L be the LHS and R be the sum on the RHS. Further, let ai = xi+1−xi, i = 1, . . . , n−1.
Then

L = [1(n− 1)a1 + 2(n− 2)a2 + · · ·+ (n− 1)1an−1]2

R =
n−1∑
i=1

[a2
i + (ai + ai+1)2 + · · ·+ (ai + ai+1 + · · ·+ an−1)2]

Using the fact that 12+22+· · ·+k2 = 2
(
k+1
3

)
+

(
k+1
2

)
and that

(
i
i

)
+

(
i+1

i

)
+· · ·+

(
k
i

)
=

(
k+1
i+1

)
,

we get, by Cauchy-Schwarz Inequality,

n2(n2 − 1)
12

×R =
( n−1∑

i=1

(12 + 22 + · · ·+ (n− i)2)
)
×R

≥
( n−1∑

i=1

[1ai + 2(ai + ai+1) + · · ·+ (n− i)(ai + ai+1 + · · ·+ an−1)
)2

=
n2

4
L
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Thus the inequality follows. Since equality holds iff (a1+a2)/a1 = 2, (a1+a2+a3)/a1) = 3,
etc, we see that inequality holds iff a1 = a2 = · · · = an−1, in other words, when the (xk)
is an AP.

6. Prove that for each given prime p there exists a prime q such that np−p is not divisible
by q for each positive integer n.

Soln. Since
pp − 1
p− 1

= 1 + p + p2 + · · ·+ pp−1 ≡ p + 1 (mod p2)

there is a prime divisor q of (pp − 1)/(p − 1) which is not congruent to 1 modulo p2. We
claim that q has the desired properties. Assume, on the contrary, that there exists n such
that np ≡ p (mod q). Then we have np2 ≡ pp ≡ 1 (mod q) by the definition of q. On
the other hand, from Fermat’s Little Theorem, nq−1 ≡ 1 (mod q). Since p2 - q − 1, we
have (p2, q − 1) | p, which leads to np ≡ 1 (mod q). Hence we have p ≡ 1 (mod q).
However, this implies 1 + p + · · ·+ pp−1 ≡ p (mod q). From the definition of q, this leads
to p ≡ 0 (mod q), a contradiction.
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