
41st International Mathematical Olympiad

Taejon, Korea, July 2000.

1. Two circles Γ1 and Γ2 intersect at M and N .

Let ` be the common tangent to Γ1 and Γ2 so that M is closer to ` than N is. Let `
touch Γ1 at A and Γ2 at B. Let the line through M parallel to ` meet the circle Γ1 again
C and the circle Γ2 at D.

Lines CA and DB meet at E; lines AN and CD meet at P ; lines BN and CD meet
at Q.

Show that EP = EQ.

Soln. (Official solution): M is in fact the midpoint of PQ. To see this, extend NM
meeting AB at X. Then X is the midpoint of the common tangent AB, because X being
on the radical axis MN is of equal power to the two circles. As PQ is parallel to AB, M
is the midpoint of PQ.
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An easy diagram chasing of the angles shows that triangle EAB is congruent to
triangle MAB. Hence EM is perpendicular to AB, thus perpendicular to PQ. From this
it follows that EP = EQ.

2. Let a, b, c be positive real numbers such that abc = 1. Prove that(
a− 1 +

1
b

) (
b− 1 +

1
c

) (
c− 1 +

1
a

)
≤ 1.

Soln. (Official solution): Write a = x/y, b = y/z and c = z/x for some positive numbers
x, y, z. Rewriting the inequality in terms of x, y, z we have

(x− y + z)(y − z + x)(z − x + y) ≤ xyz.

Let the three factors on the left hand side be u, v, w, respectively. Since any two of u, v, w
have positive sum, at most one of them is negative. If exactly one of u, v, w is negative,
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then the inequality holds. We are left with the case u, v, w > 0. By the AM-GM inequality,
we have √

uv ≤ u + v

2
= x.

Likewise
√

vw ≤ y,
√

wu ≤ z. Hence uvw ≤ xyz as desired.

Second soln. We may assume, without loss of generality, that a ≥ 1 ≥ c(> 0). Let
d = 1/c. Then d ≥ 1. Substituting b = 1/(ac) into the right hand side of the inequality
and multiplying it out, we have

(a + 1/a) + (d + 1/d) + (a/d + d/a)− (ad + d/(a2) + a/(d2))− 2
= (a− 1)(1− d) + (a− d)(d− 1)/(d2) + (d− a)(a− 1)/(a2) + 1.

We may assume a ≥ d. Then

(d− a)(a− 1)/(a2) ≤ 0.

The first two terms can be combined to get

(d− 1)(−ad2 + d2 + a− d)
d2

=
(d− 1)2(d− ad− a)

d2
≤ 0.

So the whole expression is ≤ 1.

Third soln. Denote the left hand side of the inequality by L. If a − 1 + 1/b < 0, then
a < 1 and b > 1. Thus b − 1 + 1/c and c − 1 + 1/a are both positive, whence L is
negative and the inequality holds. The same argument applies when one of the other two
factors is negative. Hence forth we assume that all the three factors in L are positive.
Note that abc = 1 implies b(a − 1 + 1/b) = (1/c − b + 1), c(b − 1 + 1/c) = (1/a − c + 1),
a(c− 1 + 1/a) = (1/b− a + 1). Thus L = (a + 1− 1/b)(b + 1− 1/c)(c + 1− 1/a) and

L2 =
(
a2 − (1− 1/b)2

)(
b2 − (1− 1/c)2

)(
c2 − (1− 1/a)2

)
.

All these imply that

0 ≤ a2 − (1− 1/b)2 ≤ a2,

0 ≤ b2 − (1− 1/c)2 ≤ b2,

0 ≤ c2 − (1− 1/a)2 ≤ c2

which in turn implies that

L2 ≤ (abc)2 = 1 and L ≤ 1.

3. Let n ≥ 2 be a positive integer. Initially, there are n fleas on a horizontal line, not all
at the same point.
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For a positive real number λ, define a move as follows:

choose any two fleas, at points A and B, with A to the left of B;

let the flea at A jump to the point C on the line to the right of B with BC/AB = λ.

Determine all values of λ such that, for any point M on the line and any initial
positions of the n fleas, there is a finite sequence of moves that will take all the fleas to
the right of M .

Soln. (Official solution): We adopt the strategy to let leftmost flea jump over the right-
most flea. After k moves, let dk denote the distance of the leftmost and the rightmost flea
and δk denote the minimum distance between neighbouring fleas. Then dk ≥ (n− 1)δk.

After the (k + 1)st move, there is a new distance between neighbouring fleas, namely
λdk. It can be the new minimum distance, so that δk+1 = λdk; and if not, then certainly
δk+1 ≥ δk. In any case

δk+1

δk
≥ min

{
1,

λdk

δk

}
≥ min{1, (n− 1)λ}.

Thus if λ ≥ 1/(n − 1) then δk+1 ≥ δk for all k; the minimum distance does not decrease.
So the positive of the leftmost flea keeps on shifting by steps of size not less that a positive
constant, so that, eventually all the fleas will be carried as far to the right as we please.

Conversely, if λ < 1/(n − 1), we’ll prove that for any initial configuration, there is a
point M beyond which no flea can reach. The position of the fleas will be viewed as real
numbers. Consider an arbitrary sequence of moves. Let sk be the sum of all the numbers
representing the positions of he fleas after the kth move and let wk be the greatest of these
numbers (i.e. the position of the rightmost flea). Note that sk ≤ nwk. We are going to
show that the sequence (wk) is bounded.

In the (k + 1)st move a flea from a A jumps over B, landing at C; let these points be
represented by the numbers a, b, c. Then sk+1 − sk + c− a.

By the given rules, c− b = λ(b− a); equivalently λ(c− a) = (1 + λ)(c− b). Thus

sk+1 − sk = c− a =
1 + λ

λ
(c− b).

Suppose that c > wk; the flea that has just jumped took the new rightmost position
wk+1 = c. Since b was the position of some flew after the kth move, we have b ≤ wk and

sk+1 − sk =
1 + λ

λ
(c− b) ≥ 1 + λ

λ
(wk+1 = wk).

This estimate is valid also when c ≤ wk, in which case wk+1 − wk = 0 and sk+1 − sk =
c− a > 0.

Consider the sequence of numbers

zk =
1 + λ

λ
wk − sk for k = 0, 1, . . . .
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The estimate we have just worked out shows that zk+1 − zk ≤ 0; the sequence is nonin-
creasing, and consequently zk ≤ z0 for all k.

We have assume that λ < 1/(n− 1). Then 1 + λ > nλ, and we can write

zk = (n + µ)wk − sk, where µ =
1 + λ

λ
− n > 0.

So we get the inequality zk = µwk + (nwk − sk) ≥ µwk. It follows that wk ≤ z0/µ for
all k. Thus the position of the rightmost flea never exceeds a constant (depending on n, λ
and the initial configuration, but not on the strategy of moves). In conclusion, the values
of λ, asked about, are all real numbers not less than 1/(n− 1).

4. A magician has one hundred cards numbered 1 to 100. He puts them into three boxes,
a red one, a white one and a blue one, so that each box contains at least one card.

A member of the audience selects two of the three boxes, chooses one card from each
and announces the sum of the numbers on the chosen cards. Given this sum, the magician
identifies the box from which no card has been chosen.

How many ways are there to put all the cards into the boxes so that this trick always
works? (Two ways are considered different if at least one card is put into a different box.)

Soln. (Official solution): Suppose 1, 2 . . . , k, k ≥ 2, are in box 1, and k+1 in box 2 and m
is the smallest number in box 3. Then m− 1 is either in box 1 or 2. But it can’t be in box
1 for (m)+(k) = (m−1)+(k+1), but it can’t be in box 2 either as (m)+(1) = (m−1)+2.
Thus we conclude that 1 and 2 are in different boxes. So we assume that 1 is in box 1, and
2, . . . , k, k ≥ 2 are in box 2, k + 1 not in box 2 and m is the smallest number in box 3. If
m > k + 1, then k + 1 is in box 1. Also m− 1 is not in box 1 as (m− 1) + (2) = (m) + (1).
Thus m − 1 is in box 2. This is not possible as (m) + (k) = (m − 1) + (k + 1). Thus
m = k + 1. If k = 2, we have 1, 2, 3 in different boxes. Since a in box 1, a + 1 in box 2,
a+2 box 3 imply that a+3 is in box 1. We have box i contains all the numbers congruent
to i (mod 3). This distribution clearly works since a ≡ i, b ≡ j (mod 3) imply a+b ≡ k
(mod 3) where k 6≡ i, j (mod 3).

Now suppose that k ≥ 3. We conclude that k + 2 can’t be included in any box. Thus
k = 99. We see that this distribution also works.

Hence there are altogether 12 ways.

Second soln. Consider 1, 2 and 3. If they are in different boxes, then 4 must be in the
same box as 1, 5 in the same box as 2 and so on. This leads to the solution where all
numbers congruent to each other mod 3 are in the same box.

Suppose 1 and 2 are in box 1 and 3 in box 2. Then 4 must be in box 1 or 2. In
general, if k(≥ 4) is in either box 1 or 2, then k + 1 also must be in box 1 or 2. Thus box
3 is empty which is impossible.

Similarly, it is impossible for 1 and 3 to be in box 1 and 2 in box 2.

Thus we are left with the case where 1 is in box 1 and 2 and 3 in box 2. Suppose box
2 contains 2, . . . k, where k ≥ 3, but does not contain k + 1 and m is the smallest number
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in box 3. Then m > k. If m > k +1, then k +1 must be box 1 and we see that no box can
contain m − 1. Thus m = k + 1. If k < 99, we see that no box can contain k + 2. Thus
k = 99. It is easy to see that this distribution works. Thus there altogther 12 ways.

Third soln. (official): We show that the answer is 12. Let the colour of the number i be
the colour of the box which contains it. In the sequel, all numbers considered are assumed
to be integers between 1 and 100.

Case 1. There is an i such that i, i + 1, i + 2 have three different colours, say rwb.
Then, since i + (i + 3) = (i + 1) + (i + 2), the colour of i + 3 can be neither w(the colour
of i + 1) nor b(the colour of i + 2). It follows that i + 3 is r. Using the same argument, we
see that the next numbers are also rwb. In fact the argument works backwards as well:
the previous three numbers are also rwb. Thus we have 1, 2 and 3 in different boxes and
two numbers are in the same box if there are congruent mod 3. Such an arrangement is
good as 1 + 2, 2 + 3 and 1 + 3 are all different mod 3. There are 6 such arrangements.

Case 2. There are no three neighbouring numbers of different colours. Let 1 be red.
Let i be the smallest non-red number, say white. Let the smallest blue number be k. Since
there is no rwb, we have i + 1 < k.

Suppose that k < 100. Since i + k = (i− 1) + (k + 1), k + 1 should be red. However,
in view if i + (k + 1) = (i + 1) + k, i + 1 has to be blue, which draws a contradiction to the
fact that the smallest blue is k. This implies that k can only be 100.

Since (i− 1) + 100 = i + 99, we see that 99 is white. We now show that 1 is red, 100
is blue, all the others are white. If t > 1 were red, then in view of t + 99 = (t− 1) + 100,
t− 1 should be blue, but the smallest blue is 100.

So the colouring is rww . . .wwb, and this is indeed good. If the sum is at most 100,
then the missing box is blue; if the sum is 101, then it is white and if the sum is greater
than 101, then it is red. The number of such arrangements is 6.

5. Determine whether or not there exists n such that

n is divisible by exactly 200 different prime numbers and 2n + 1 is di-
visible by n.

Soln. (oficial): The answer is yes and we shall prove it proving a more general statement:
For each k ∈ N, there exists n = n(k) ∈ N such that n | 2n + 1, 3 | n and n has exactly k
prime factors. We shall prove it by induction on k.

We have n(1) = 3. We then assume for some k ≥ 1, there exists n = n(k) with
the desired properties. Then n is odd. Since 23n + 1 = (2n + 1)(22n − 2n + 1) and 3
divides the second factor, we have 3n | 23n + 1. For any positive odd integer m, we have
23n + 1 | 23nm + 1. Thus if p is prime number such that p - n and p | 23n + 1, then
3np|23np + 1 and n(k + 1) = 3pn has the desired properties. Thus the proof would be
complete if we can find such a p. This is achieved by the following lemma:

Lemma. For any integer a > 2 such that 3 | a + 1, there exists a prime number p
such that p | a3 + 1 but p - a + 1.
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Proof. Assume that this is false for a certain integer a > 2. Since a3 +1 = (a+1)(a2−
a+1), each prime divisor of a2−a+1 divides a+1. Since a2−a+1 = (a+1)(a−2)+3,
we conclude that a2 − a + 1 is a power of 3. Since a + 1 and a− 2 are both multiples
of 3, we conclude that 9 - a2 − a + 1. This gives a contradiction as a2 − a + 1 > 3 for
a > 2.

6. Let AH1, BH2, CH3 be the altitudes of an acute-angled triangle ABC. The incircle of
the triangle ABC touches the sides BC, CA,AB at T1, T2, T3, respectively. Let the lines
`1, `2, `3 be the reflections of the lines H2H3, H3H1, H1H2 in the lines T2T3, T3T1, T1T2,
respectively.

Prove that `1, `2, `3 determine a triangle whose vertices lie on the incircle of the triangle
ABC.

Soln. (Official solution): Let M1,M2,M3 be the reflections of T1, T2, T3 across the bisec-
tors of ∠A,∠B,∠C, respectively. The points M1, M2, M3 obviously lie of the incircle
of 4ABC. We prove that they are the vertices of the triangle formed by the images in
question, which settle the claim.

By symmetry, it suffices to show that the reflection l1 of H1H2 in T2T3 passes through
M2. Let I be the incentre of 4ABC. Note that T2 and H2 are always on the same side of
BI, with T2 closer to BI than H2. We consider only the case when C is on this same side
of BI, as in the figure (minor modifications are needed if C is on the other side).
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Let ∠A = 2α, ∠B = 2β, ∠C = 2γ.

Claim 1: the mirror image of H2 with respect to T2T3 lies on the line BI.

Proof of claim 1: Let ` ⊥ T2T3, H2 ∈ `. Denote by P and S the points of intersection
of BI with ` and BI with T2T3. Note that S lies on both line segments T2T3 and BP .
It is sufficient to prove that ∠PSH2 = 2∠PST2. We have ∠PST2 = ∠BST3 and by the
external angle theorem,

∠BST3 = ∠AT3S − ∠T3BS = (90◦ − α)− β = γ.

Next ∠BST1 = ∠BST3 = γ by symmetry across BI. Note that C and S are on the same
side of IT1, since ∠BT1S = 90◦ + α > 90◦. Then, in view of the equalities ∠IST1 =
∠ICT1 = γ, the quadrilateral SIT1C is cyclic, so ∠ISC = ∠IT1C = 90◦. Hence ∠BSC =
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∠BH2C, and hence the quadrilateral BCH2S is cyclic. It shows that ∠PSH2 = ∠C =
2γ = 2∠PST2, as needed. This completes of the proof of the claim.

Note that the proof of the claim also gives

∠BPT2 = ∠SH2T2 = β,

by symmetry across T2T3 and because the quadrilateral BCH2S is cyclic. Then, since M2

is the reflection of T2 across BI, we obtain ∠BPM2 = ∠BPT2 = β = ∠CBP , and so
PM2 is parallel to BC. To prove that M2 lies on `1, it now suffices to show that `1 is also
parallel to BC.

Suppose β 6= γ; let the line CB meet H2H3 and T2T3 at D and E, respectively. (Note
that D and E lie on the line BC on the same side of the segment BC.) An easy angle
computation gives ∠BDH3 = 2|β − γ|, ∠BET3 = |β − γ|, and so the line `1 is indeed
parallel to BC. The proof is now complete.
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