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Problem 1 

Given a triangle ABC, let I be the incenter. The internal bisectors of angles A, B, C meet 

the opposite sides in A', B', C' respectively. Prove that:  

    1/4 < AI.BI.CI/(AA'.BB'.CC') <= 8/27.  

  

Solution 

Consider the areas of the three triangles ABI, BCI, CAI. Taking base BC we conclude 

that (area ABI + area CAI)/area ABC = AI/AA'. On the other hand, if r is the radius of 

the in-circle, then area ABI = AB.r/2 and similarly for the other two triangles. Hence 

AI/AA' = (CA + AB)/p, where p is the perimeter. Similarly BI/BB' = (AB + BC)/p and 

CI/CC' = (BC + CA)/p. But the arithmetic mean of (CA + AB)/p, (AB + BC)/p and (BC + 

CA)/p is 2/3. Hence their product is at most (2/3)
3
 = 8/27.  

Let AB + BC - CA = 2z, BC + CA - AB = 2x, CA + AB - BC = 2y. Then x, y, z are all 

positive and we have AB = y + z, BC = z + x, CA = x + y. Hence 

(AI/AA')(BI/BB')(CI/CC') = (1/2 + y/p)(1/2 + z/p)(1/2 + x/p) > 1/8 + (x+y+z)/(4p) = 1/8 

+ 1/8 = 1/4.  

  

 

The solutions given on this site are not always complete; they are designed to be 

sufficient for anyone who has thought hard about the problem. 

  



Problem 2 

Let n > 6 be an integer and let a1, a2, ... , ak be all the positive integers less than n and 

relatively prime to n. If   a2 - a1 = a3 - a2 = ... = ak - ak-1 > 0, prove that n must be either a 

prime number or a power of 2.  

  

Solution 

by anon  

If n is odd, then 1 and 2 are prime to n, so all integers < n are prime to n, and hence is 

prime.  

If n = 4k, then 2k-1 and 2k+1 are prime to n, so all odd integers < n are prime to n, and 

hence n must be a power of 2.  

If n = 4k+2, then 2k+1 divides n, but 2k+3 and 2k+5 are prime to n. But if n > 6, then 

2k+5 < n, so this cannot be a solution.  

 

The solutions given on this site are not always complete, they are designed to be 

sufficient for anyone who has thought hard about the problem. 

  



Problem 3 

Let S = {1, 2, 3, ... 280}. Find the smallest integer n such that each n-element subset of S 

contains five numbers which are pairwise relatively prime.  

  

Solution 

Answer: 217.  

Let A be the subset of all multiples of 2, 3, 5 or 7. Then A has 216 members and every 5-

subset has 2 members with a common factor. [To show that |A| = 216, let an be the 

number of multiples of n in S. Then a2 = 140, a3 = 93, a5 = 56, a6 = 46, a10 = 28, a15 = 18, 

a30 = 9. Hence the number of multiples of 2, 3 or 5 = a2 + a3 + a5 - a6 - a10 - a15 + a30 = 206. 

There are ten additional multiples of 7: 7, 49, 77, 91, 119, 133, 161, 203, 217, 259.]  

Let P be the set consisting of 1 and all the primes < 280. Define:  

A1 = {2.41, 3.37, 5.31, 7.29, 11.23, 13.19}  

A2 = {2.37, 3.31, 5.29, 7.23, 11.19, 13.17}  

A3 = {2.31, 3.29, 5.23, 7.19, 11.17, 13.13}  

B1 = {2.29, 3.23, 5.19, 7.17, 11.13}  

B2 = {2.23, 3.19, 5.17, 7.13, 11.11}  

Note that these 6 sets are disjoint subsets of S and the members of any one set are 

relatively prime in pairs. But P has 60 members, the three As have 6 each, and the two Bs 

have 5 each, a total of 88. So any subset T of S with 217 elements must have at least 25 

elements in common with their union. But 6.4 = 24 < 25, so T must have at least 5 

elements in common with one of them. Those 5 elements are the required subset of 

elements relatively prime in pairs.  

  

 

The solutions given on this site are not always complete, they are designed to be 

sufficient for anyone who has thought hard about the problem. 

  



Problem 4 

Suppose G is a connected graph with k edges. Prove that it is possible to label the edges 1, 

2, ... , k in such a way that at each vertex which belongs to two or more edges, the 

greatest common divisor of the integers labeling those edges is 1.  

[A graph is a set of points, called vertices, together with a set of edges joining certain 

pairs of distinct vertices. Each pair of edges belongs to at most one edge. The graph is 

connected if for each pair of distinct vertices x, y there is some sequence of vertices x = 

v0, v1, ... , vm = y, such that each pair vi, vi+1 (0 <= i < m) is joined by an edge.]  

  

Solution 

The basic idea is that consecutive numbers are relatively prime.  

We construct a labeling as follows. Pick any vertex A and take a path from A along 

unlabeled edges. Label the edges consecutively 1, 2, 3, ... as the path is constructed. 

Continue the path until it reaches a vertex with no unlabeled edges. Let B be the endpoint 

of the path. A is now guaranteed to have the gcd (= greatest common divisor) of its edges 

1, because one of its edges is labeled 1. All the vertices between A and B are guaranteed 

to have gcd 1 because they have at least one pair of edges with consecutive numbers. 

Finally, either B has only one edge, in which case its gcd does not matter, or it is also one 

of the vertices between A and B, in which case its gcd is 1.  

Now take any vertex C with an unlabeled edge and repeat the process. The same 

argument shows that all the new vertices on the new path have gcd 1. The endpoint is fine, 

because either it has only one edge (in which case its gcd does not matter) or it has 

already got gcd 1.  

Repeat until all the edges are labeled.  

  

 

The solutions given on this site are not always complete, they are designed to be 

sufficient for anyone who has thought hard about the problem. 

  

  



Problem 5 

Let ABC be a triangle and X an interior point of ABC. Show that at least one of the 

angles XAB, XBC, XCA is less than or equal to 30.  

  

Solution 

By Marcin Mazur, University of Illinois at Urbana-Champaign  

Let P, Q, R be the feet of the perpendiculars from X to BC, CA, AB respectively. Use A, 

B, C to denote the interior angles of the triangle (BAC, CBA, ACB). We have PX = BX 

sin XBC = CX sin(C - XCA), QX = CX sin XCA = AX sin(A - XAB), RX = AX sin 

XAB = BX sin(B - XBC). Multiplying: sin(A - XAB) sin(B - XBC) sin(C - XCA) = sin 

A sin B sin C.  

Now observe that sin(A - x)/sin x = sin A cot x - cos A is a strictly decreasing function of 

x (over the range 0 to ), so if XAB, XBC and XCA are all greater than 30, then sin(A - 

30) sin(B - 30) sin(C - 30) > sin
3
30 = 1/8.  

But sin(A - 30) sin(B - 30) = (cos(A - B) - cos(A + B - 60))/2 <= (1 - cos(A + B - 60))/2 

= (1 - sin(C - 30))/2, since (A - 30) + (B - 30) + (C - 30) = 90. Hence sin(A - 30) sin(B - 

30) sin(C - 30) <= 1/2 (1 - sin(C - 30)) sin(C - 30) = 1/2 (1/4 - (sin(C - 30) - 1/2)
2
) <= 1/8. 

So XAB, XBC, XCA cannot all be greater than 30.  

  

By Jean-Pierre Ehrmann  

P, Q, R as above. Area ABX + area BCX + area CAX = area ABC, so AB.XR + BC.XP 

+ CA.XQ = 2 area ABC <= BC.AP <= BC(AX + XP). Hence AB.XR/AX + CA.XQ/AX 

<= BC.  

Squaring and using ()
2
 >= 4 , we have: BC

2
 >= 4 AB.CA. XR.XQ/AX

2
. Similarly: 

CA
2
 >= 4 BC.AB.XP.XR/BX

2
, and AB

2
 >= 4 AB.BC.XQ.XP/CX

2
.  

Multiplying these three inequalities together gives: 1 >= 64 

(XR/AX)
2
(XP/BX)

2
(XQ/CX)

2
, and hence: (XR/AX) (XP/BX) (XQ/CX) <= 1/8, or sin 

XAB sin XBC sin XCA <= 1/8. So not all XAB, XBC, XCA are greater than 30.  

  

Gerard Gjonej noted that the result follows almost immediately from the Erdos-Mordell 

inequality: XA + XB + XC >= 2(XP + XQ + XR). [For if all the angles are greater than 

30, then XR/XA, XP/XB, XQ/XC are all greater than sin 30 = 1/2.]. This result was 

notoriously hard to prove - Erdos hawked it around a large number of mathematicians 



before Mordell found a proof - but the proof now appears fairly innocuous, at least if you 

do not have to rediscover it:  

Let R1, Q1 be the feet of the perpendiculars from P to AB, CA respectively. Similarly, let 

P2, R2 be the feet of the perpendiculars from Q to BC, AB, and Q3, P3 the feet of the 

perpendiculars from R to CA, BC. Then P2P3 is the projection of QR onto BC, so 

P2P3/QR <= 1. Similarly, Q3Q1/RP <= 1, and R1R2/PQ <= 1. Hence XA + XB + XC >= 

XA.P2P3/QR + XB.Q3Q1/RP + XC.R1R2/PQ  (*)  

Now BPXR is cyclic, because BPX and XRB are both right angles. Hence angle BXR = 

angle BPR = angle RPP3, so triangles XBR and PRP3 are similar. Hence PP3 = 

PR.XR/XB.  

Similarly, QQ1 = QP.XP/XC, RR2 = RQ.XQ/XA, and PP2 = PQ.XQ/XC, QQ3 = 

QR.XR/XA, RR1 = RP.XP/XB. Substituting into (*), we obtain:  

XA + XB + XC >= XA( PQ/QR XQ/XC + PR/QR XR/XB ) + XB( QR/RP XR/XA + 

QP/RP XP/XC ) + XC( RP/PQ XP/XB + RQ/PQ XQ/XA ).  

On the right hand side, the terms involving XP are: XP( QP/RP XB/XC + RP/PQ 

XC/XB ), which has the form XP (x + 1/x) and hence is at least 2 XP. Similarly for the 

terms involving XQ and XR.  

  

 

The solutions given on this site are not always complete, they are designed to be 

sufficient for anyone who has thought hard about the problem. 

  



  

Problem 6 

Given any real number a > 1 construct a bounded infinite sequence x0, x1, x2, ... such that 

|xn - xm| |n - m|
a
 >= 1 for every pair of distinct n, m.  

[An infinite sequence x0, x1, x2, ... of real numbers is bounded if there is a constant C 

such that |xn| < C for all n.]  

  

Solution 

By Marcin Mazur, University of Illinois at Urbana-Champaign  

Let t = 1/2
a
. Define c = 1 - t/(1 - t). Since a > 1, c > 0. Now given any integer n > 0, take 

the binary expansion n = i bi 2
i
, and define xn = 1/c bi>0 t

i
. For example, taking n = 21 = 

2
4
 + 2

2
 + 2

0
, we have x21 = (t

4
 + t

2
 + t

0
)/c. We show that for any unequal n, m, |xn - xm| |n - 

m|
a
 >= 1. This solves the problem, since the xn are all positive and bounded by ( t

n
 )/c = 

1/(1 - 2t).  

Take k to be the highest power of 2 dividing both n and m. Then |n - m| >= 2
k
. Also, in 

the binary expansions for n and m, the coefficients of 2
0
, 2

1
, ... , 2

k-1
 agree, but the 

coefficients for 2
k
 are different. Hence c |xn - xm| = t

k
 + i>k yi, where yi = 0, t

i
 or - t

i
. 

Certainly i>k yi > - i>k t
i
 = t

k+1
/(1 - t), so c |xn - xm| > t

k
(1 - t/(1 - t)) = c t

k
. Hence |xn - xm| 

|n - m|
a
 > t

k
 2

ak
 = 1.  

  

 

The solutions given on this site are not always complete, they are designed to be 

sufficient for anyone who has thought hard about the problem. 

 

 


