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Problem 1

Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot
of the altitude from A.

Suppose that {BCA >= £ABC + 30°

Prove that “<CAB + £COP <90<

Solution 1

Let == £CAB, %= £ABC, *= ¢BCA, and ?= £COP. Let K and Q be the reflections
of A and P, respectively, across the perpendicular bisector of BC. Let R denote the

circumradius of *ABC. Then OA = OB = OC = OK = R. Furthermore, we have QP
= KA because KQPA is a rectangle. Now note that {AOK = tAOB - *tKOB = +
AOB - {AOC =27%-28>=60°%
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It follows from this and from OA = OK =R that KA >= R and QP >= R. Therefore,
using the Triangle Inequality, we have OP + R=0Q + OC >QC =QP + PC >=R

+ PC. It follows that OP > PC, and hence in #COP, £PCO > #. Now since #=1\2
£BOC = 1\2 (180°- 2£PCO) = 90°- £PCO, it indeed follows that “+ < 90<

Solution 2

As in the previous solution, it is enough to show that OP > PC. To this end, recall
that by the (Extended) Law of Sines, AB = 2Rsin® and AC = 2Rsin#. Therefore,

we have BP - PC = ABcos¥ - ACcos? = 2R( sin?cos# - sinfcos?) = 2Rsin(? - #). It
follows from this and from

30°<= 7*- fi< *< 90°

that BP - PC >= R. Therefore, we obtain that R + OP = BO + OP >BP >=R + PC,
from which OP > OC, as desired.

Solution 3

We first show that R > CP -CB. To this end, since CB = 2Rsin* and CP = ACcos
¥ = 2Rsinfcos?, it suffices to show that 1\4 > sin®sinfcos?. We note that 1 > sin®
=sin(? + &) =sin®cos¥ + sinficos* and 1\2 <= sin(?* - #) = sin¥cos# - sinfcos?

since 30°<= *- #< 90< It follows that 1\4 > sin#cos® and that 1\4 > sin“sin®cos ™.



Now we choose a point J on BC so that CJ -CP = R®. It follows from this and
from R*> CP -CB that CJ > CB, so that £OBC > ¢0JC. Since OC/CJ = PC/CO
and £JCO = £OCP, we have #JCO =2OCP and #OJC = <POC = 4, It follows
that < £OBC = 90°- %or %+ 9< 90<

Solution 4

On the one hand, as in the third solution, we have R?> > CP -CB. On the other

hand, the power of P with respect to the circumcircle of 2ABC is BP -PC = R?-
OP?. From these two equations we find that

OP?=R*-BP -PC>PC -CB-BP -PC =PC?

from which OP > PC. Therefore, as in the first solution, we conclude that =+ <
90<
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Problem 2

a B c

=1

+ + =
Vat +8bc VB +3ca V& +8ab

for all positive real numbers a, b and c.

Solution

First we shall prove that

4
a a3
= 4 4 ¢
¥at +8BC 2% +BF 407

or equivalently, that

2
=ad (@ +350).
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The AM-GM inequality yields

[a..% e +c%]2 —(a.%]z = (E?% +c%](a.% +aF 457 +c%]
2z 211
= 2B3 0% .dal B3 o3
= Ba% Be
Thus
[a.% +.E'.'% +-:'%]2 = (a%)z +Ba% Be
= a,%(ef +E B,
SO
3
a as

s

4 4 4
¥ @' +88C 2T 457 405,

Similarly, we have

3
L] B3
; = 5 3¢
Ll R £G4 403

1
[ .:!3
> T Tx oz %
e+ ah EF 4T 405

Adding these three inequalities yields

a B c

+ + >
Val +8bc V& +8ca V& +8akb

1.

Comment. The proposer conjectures that for any a, b, ¢ > 0 and *>= 8, the
following inequality holds:

a B c 3
+ + =
Vaf +ibc YV +ica Y E+iak Y1+
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Problem 3
Twenty-one girls and twenty-one boys took part in a mathematical contest.

« Each contestant solved at most six problems.
o For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least three
boys.

Solution 1

We introduce the following symbols: G is the set of girls at the competition and B is the
set of boys, P is the set of problems, P(Q) is the set of problems solved by g =G, and

P(b) is the set of problems solved by b =B. Finally, G(p) is the set of girls that solve p =
P and B(p) is the set of boys that solve p. In terms of this notation, we have that for all g

=G and b =B,


http://imo.wolfram.com/index.html
http://www.wolfram.com/
http://imo.wolfram.com/index.html
http://imo.wolfram.com/scores/
http://imo.wolfram.com/contestants/index.html
http://imo.wolfram.com/problemset/
http://imo.wolfram.com/about/
http://imo.wolfram.com/gallery/index.html
http://imo.wolfram.com/facts.html

@ | Pgl] =6, |PEI] 26, EPHNPEEE

We wish to prove that some p =P satisfies |G(p)| >= 3 and |B(p)|>=3. To do this, we
shall assume the contrary and reach a contradiction by counting (two ways) all ordered

triples (p, g, r) such that p =P(g) "P(b). With T = {(p, g, b) : p =P(g) "P(b)}, condition
(b) yields

ITI =2, 2L IPGENPE = |G- |B] =217, (1)

FEGHEE

Assume that no p =P satisfies |G(p)| >= 3 and |B(p)| >= 3. We begin by noting that

SNGE =2 IPEI <616 ad > | B 2615 23
=R =y

FEF

(Note. The equality in (2) is obtained by a standard double-counting technique: Let *(g,
p) = 1if g solves p and *(g, p) = 0 otherwise, and interchange the orders of summation
in Zp%p 4= %(g, p).) Let

Fo={pe P | @l =30,
P_o=ipe P | Fp| 22}

Claim. Z,=p_ |G(p)| >= |G| thus Z,=p. |G(p)| <=5 |G|. Also Z,=p. |B(p)| >= |B| thus Z,=
p- [B(b)| <=5 [B|.

Proof. Let g =G be arbitrary. By the Pigeonhole Principle, conditions (a) and (b) imply
that g solves some problem p that is solved by at least [21/6 1= 4 boys. By assumption,
|B(p)| >= 4 implies that p =P., so every girl solves at least one problem in P.. Thus

16w = 1G] {3

PR

In view of (2) and (3) we have

D@ =D, 1G@I- 2, |G| =516
FEL

Ry el

Also, each boy solves a problem that is solved by at least four girls, so each boy solves a
problem p =P.. Thus Z,=p, |B(p)| >= |B|, and the calculation proceeds as before using
(2. "

Using the claim just established, we find



T

Toer |G- 155

Toer, | G@ - 1BE) | +Zpee. |5@] - 15|
2T per, | G +2 3 cp 1B (B

10| & | +10 | F| =20.21.

1,

1,

This contradicts (1), so the proof is complete.

Solution 2

Let us use some of the notation given in the first solution. Suppose that for every p =P

either |G(p)| <=2 or |B(p)| <= 2. For each p =P, color p red if |G(p)| <= 2 and otherwise
color it black. In this way, if p is red then |G(p)| <= 2 and if p is black then |B(p)| <= 2.
Consider a chessboard with 21 rows, each representing one of the girls, and 21 columns,

each representing one of the boys. For each g =G and b =B, color the square

corresponding to (g, b) as follows: pick p =P(g) P (b) and assign p's color to that
square. (By condition (b), there is always an available choice.) By the Pigeonhole

Principle, one of the two colors is assigned to at least [441/21= 221 squares, and thus

some row has at least 1221/211= 11 black squares or some column has at least 11 red
squares.

Suppose the row corresponding to g =G has at least 11 black squares. Then for each of
11 squares, the black problem that was chosen in assigning the color was solved by at

most 2 boys. Thus we account for at least [11/21= 6 distinct problems solved by g. In
view of condition (a), g solves only these problems. But then at most 12 boys solve a
problem also solved by g, in violation of condition (b).

In exactly the same way, a contradiction is reached if we suppose that some column has
at least 11 red squares. Hence some p =P satisfies |G(p)| >= 3 and |B(p)| >= 3.
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Problem 4

Let n be an odd integer greater than 1, and let k, ko, ..., k, be given integers. For each of
the n! permutations a = ay, a,, ..., a, of 1, 2, ..., n, let

St =2 ka

=1

Prove that there are two permutations b and c, b #c, such that n! is a divisor of S(b) -
S(c).

Solution

Let £5(a) be the sum of S(a) over all n! permutations a = (ag, ay, ..., a,). We compute £
S(a) mod n! two ways, one of which depends on the desired conclusion being false, and
reach a contradiction when n is odd.

First way. In £5(a), k; is multiplied by each i ={1, ..., n} a total of (n - 1)! times, once
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for each permutation of {1, ..., n} in which a; = i. Thus the coefficient of k; in £S(a) is
M-I +2+ - +m=(+1)1 /2

The same is true for all k;, so

S = m;l)! Sk (1)

i=1

Second way. If n! is not a divisor of S(a) - S(b) for any a #b, then each S(a) must have a
different remainder mod n!. Since there are n! permutations, these remainders must be
precisely the numbers 0, 1, 2, ..., n! - 1. Thus

ml—11n!
> 8ia) = - mod nl . (2}

Combining (1) and (2), we get

11 2 I —1)nl
D) Zkz-stn zjn mod nl £
=1

Now, for n odd, the left side of (3) is congruent to 0 modulo n!, while for n > 1 the right
side is not congruent to 0 (n! - 1 is odd). For n > 1 and odd, we have a contradiction.
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Problem 5

In a triangle ABC, let AP bisect <BAC, with P on BC, and let BQ bisect *ABC,
with Q on CA.

It is known that ‘BAC = 60<and that AB + BP = AQ + QB.

What are the possible angles of triangle ABC?

Solution

Denote the angles of ABC by *=60< #, and ?. Extend AB to P' so that BP' = BP,
and construct P on AQ so that AP = AP'. Then BP'P is an isosceles triangle with
base angle /2. Since AQ + QP" = AB + BP' = AB + BP = AQ + QB, it follows that
QP" = QB. Since AP'P" is equilateral and AP bisects the angle at A, we have PP’
= PP".
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lli'J.I'."

A B &
Claim. Points B, P, P" are collinear, so P" coincides with C.

Proof. Suppose to the contrary that BPP" is a nondegenerate triangle. We have

that £PBQ = ¢PP'B = <P P"Q = #/2. Thus the diagram appears as below, or else
with P is on the other side of BP". In either case, the assumption that BPP" is
nondegenerate leads to BP = PP" = PP’, thus to the conclusion that BPP" is
equilateral, and finally to the absurdity £/2 = 60°so %+ f=60°+ 120°=180<

Pﬂ'

B
Thus points B, P, P" are collinear, and P" = C as claimed.™

Since triangle BCQ is isosceles, we have 120°- #= ¥= §/2 so #=80 and *=40<
Thus ABC is a 60-80-40 degree triangle.
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Problem 6
Let a, b, ¢, d be integers with a>b > ¢ >d > 0. Suppose that
actbd=(b+d+a-c)(b+d-a+c).

Prove that ab + cd is not prime.

Solution 1
Suppose to the contrary that ab + cd is prime. Note that
ab+cd=la+dic+(F—cla=m-gedia+&, B—0c)

for some positive integer m. By assumption, either m=1orgcd(a+d,b-c) =1. We
consider these alternatives in turn.

Case (i): m=1. Then
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codig+d, b=l = ab+ecdzab+cd—-a—-b+c+4)

@B+ e—1+iEF—-c)@+1)

I

godig+4, 5 —¢l,

which is false.

Case (ii): gcd(a + d, b - ¢) = 1. Substituting ac + bd = (a + d)b - (b - c)a for the left-hand
sideofac+bd=(b+d+a-c)(b+d-a+c), weobtain

R+ @—c—-F =F-1F+c+4).
In view of this, there exists a positive integer k such that

a—-c—d = Rb-0),
Bte4+d = Ra+d.

Adding these equations, we obtaina+ b =k(a+b-c+d)and thusk(c-d) = (k- 1)(a+
b). Recall thata > b >c > d. If k = 1 then ¢ = d, a contradiction. If k >= 2 then

k a+k

2F =
k-1 c—d

2,

a contradiction.

Since a contradiction is reached in both (i) and (ii), ab + cd is not prime.

Solution 2
The equalityac+bd =(b+d+a-c)(b+d-a+c)isequivalent to

& —ac+E =K +hi+d. i1}

Let ABCD be the quadrilateral with AB=a, BC=d, CD =b, AD =¢, “‘BAD =60 and
BCD = 120< Such a quadrilateral exists in view of (1) and the Law of Cosines; the

common value in (1) is BD% Let £ABC = &, so that £CDA = 180<2=. Applying the Law
of Cosines to triangles ABC and ACD gives

a.2 +.'Jf2 —Eadcnsazﬁc‘z =.E:'2 +-:'2 +2hoooa .



Hence 2 cos® = (a + d? - b? - ¢?)/(ad + bc), and

PRI a+d - - _ labted)lactbd)
af+bc ad+he.

Because ABCD is cyclic, Ptolemy's Theorem gives

(A BD° =(ab +od

It follows that

[ac+bd) (@ —ac+c) = ab+cd (ad + bol. {2
(Note. Also straightforward algebra can be used obtain (2) from (1).) Next observe that
ab+cd>ac+bd>ad+be (3
The first inequality follows from (a - d)(b - ¢) > 0, and the second from (a - b)(c - d) > 0.
Now assume that ab + cd is prime. It then follows from (3) that ab + cd and ac + bd are
relatively prime. Hence, from (2), it must be true that ac + bd divides ad + bc. However,

this is impossible by (3). Thus ab + cd must not be prime.

Note. Examples of 4-tuples (a, b, c, d) that satisfy the given conditions are (21, 18, 14, 1)
and (65, 50, 34, 11).



