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1. Problem I.

(1) Suppose contrary that there exists an n-tuple (xi) such that|xi − ai| <
d

2
for all

i = 1, 2, . . . , n. Therefore,

xi −
d

2
< ai < xi −

d

2
,

for each i = 1, 2, . . . , n.
Thus, for any j, 1 ≤ j ≤ i,

aj < xj +
d

2
≤ xi +

d

2
.

Similarly, if i ≤ j ≤ n,

aj > xj −
d

2
≥ xi −

d

2
.

This implies

max
1≤j≤i

aj < xi +
d

2

and
min

i≤j≤n
aj > xi −

d

2
.

Therefore,

di = max
1≤j≤i

aj − min
i≤j≤n

aj <

(
xi +

d

2

)
−
(

xi −
d

2

)
= d .

Hence, di < d for all i. Therefore, max
1≤i≤n

di < d, which contradicts the definition

of d.
(2) Choose xi = max

1≤j≤i
aj −

d

2
for all i = 1, 2, . . . , n. It is obvious that (xi) is

nondecreasing. Moreover,

xi − ai ≥ xi − max
1≤j≤i

aj ≥ −d

2
.

Since

xi − ai =
(

max
1≤j≤i

aj −
d

2

)
− ai ≤

(
max
1≤j≤i

aj − min
i≤j≤n

aj

)
− d

2
.
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Hence,

xi − ai ≤ di −
d

2
≤ d− d

2
=

d

2
.

Therefore,

|xi − ai| ≤
d

2
.

for all i = 1, 2, . . . , n. From the first part, the equality must hold for this choice
of (xi).
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2. Problem II.

We shall prove the following statement instead: the circumcenter E of the triangle
CFG lies on the circumcircle of the triangle BCD if and only if ` bisects ∠DAB.

(1) Suppose that ` bisects ∠DAB. Note that BG = AB since ABG is isosceles.
Moreover, AB = CD since ABCD is a parallellogram. Hence, BG = CD. Also,

∠EGC =
π

2
− ∠CEG

2
=

π

2
− ∠CFG =

π

2
− ∠BAG =

π

2
− ∠BAD

2
.

Similarly, ∠ECD =
π

2
− ∠BAD

2
. Consequently, ∠EGB = ∠EGC = ∠ECD.

Because E is the circumcenter of CFG, EG = EC.
Therefore, BG = CD, ∠EGB = ∠ECD, and EG = EC. That is, the triangles
BGE and DCE are congruent. Therefore, DCE is a rotation image of BCE
about E. This implies the angles between corresponding sides are equal, namely,
∠BCD = ∠BED. This proves the converse.

(2) Suppose that E lies on the circumcenter of BCD. Let M be the intersection
of the diagonals AC and BD. If we can show that EM is perpendicular to
BD, we prove the assertion. (EM⊥BD implies ∠EDB = ∠EBD since M is
the midpoint of BD. If ∠EDB = ∠EBD, then ∠ECD = ∠ECG and thus,
∠GAD = ∠GAB.)
Let U and V be the midpoint of CF and CG, respectively. Suppose also that
the perpendicular from E meets BD at M ′. Hence, EU⊥CF and EV⊥CG.
Since E is on the circumference of the trangle BCD, Simson’s theorem says
that the endpoints of the altitudes from E are collinear. Hence, U , V , and M ′

are on the same straight line. However, since U and V are the midpoints of CF
and CG, the homothety mapping U and V , consecutively, to F and G must also
map M ′ to A. This implies that M ′ is the midpoint of AC, and thus, M ′ = M .
Therefore, EM⊥BD, as desired.
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3. Problem III.

Let G(V,E) be a simple graph whose vertices represent the competitors and there is
an edge between a pair of contestants iff they are acquainted. Define γ(H) to be the size
of the largest clique of a graph H and V (H) the set of vertices of H. The hypothesis
is that γ(G) is even. Therefore, we must show that it is possible to divide G into two
disjoint subgraphs G1 and G2 such that V (G1) ∪ V (G2) = V and γ(G1) = γ(G2). We
need to prove the following two lemmas first.

Lemma 1: For any partition (G1, G2) of G, if we move one vertex of G1 to G2, γ(G1)
decreases by 0 or 1, while γ(G2) increases by 0 or 1.
Proof:

This is clear. Then, the proof is omitted.

�

Lemma 2: For any partition (G1, G2) of G, γ(G1) + γ(G2) ≥ γ(G).
Proof:

Let a = γ(G1), b = γ(G2), and c = γ(G). Consider the largest clique K of G,
suppose that k vertices of K lies in G1. Hence, k ≤ a. Moreover, the rest c− k vertices
of K must be in G2. That is, c − k ≤ b. Consequently, c = k + (c − k) ≤ a + b, as
desired.

�

We follow the succeeding algorithm. First, begin with G1 being the largest clique
of G and put all the other vertices into G2. If γ(G1) = γ(G2), we are done. Otherwise
γ(G1) > γ(G2), move one vertex from G1 continually, but never make γ(G1) < γ(G2)−1.
This process must terminate since G1 has only finitely many vertices. From the first
lemma, the difference γ(G1) − γ(G2) can be reduced only by 0, 1, or 2 for each move.
Therefore, we can finally obtain a pair (G1, G2) such that γ(G1)− γ(G2) = 0 or −1. If
γ(G1)− γ(G2) = 0, the problem is proved.

Suppose that we arrive at γ(G1) − γ(G2) = −1. Assume that γ(G1) = p and
γ(G2) = p + 1. Let Γ1, Γ2, ..., Γd be all maximal cliques of G2. Assume that L is the
set of vertices that have left from G1 to G2. Since γ(G) is even, |V (L)| < γ(G2) and
thus, cannot be one of the maximal cliques of G2. If there is an integer i, 1 ≤ i ≤ d,
for which Γi does not contain L. Then, we can move a vertex of L back to G1 without
changing γ(G2), and we are done.

Now suppose that L is a subgraph of Γi for every i = 1, 2, . . . , d. Write V (Γi) =
L∪Mi. It is clear that Mi’s are nonempty. Choose v1 from M1 arbitrarily and move it

to G1. If v1 ∈
d⋂

i=1

Mi 6= ∅, we stop. This vertex cannot form a clique with G1 because of

the maximality of G1 ∪ L. Therefore, γ(G2) is now reduced by 1, and at this point we
are done. If v1 does not destroy all clique in G2, without loss of generality, let M2 be the
set that is left intact. Choose v2 from M2 such that v1 and v2 are not adjacent. (This
is possible, otherwise, concatenation of v1 and Γ2 will make a larger clique than Γ2, a
contradiction.) Move v2 to G1. If v2 destroys all cliques in G2, then stop. Otherwise,
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continue the process further. (Without loss of generallity, suppose M3 is intact, choose
v3 in M3 such that v2 and v3 are not connected, and so on).

During the process, if γ(G1) increases to p + 1 before the last move, we are done. If
it does not increase at all even after the last move, therefore, after the last move, we will
obtain γ(G1) = p = Γ(G2). Now, suppose that γ(G1) increases exactly at the last move.
Let X be the (p+1)-clique obtained after the last move. Consider the sequence of moves
(v1, v2, . . . , vr) ∈ M1×M2×· · ·×Mr. Note that vr−1vr /∈ E; i.e., vr−1 /∈ V (X). Hence,
moving vr−1 back to G2 still leaves γ(G1) = p + 1, while increasing γ(G2) to p + 1. For
v1, v2, · · · , vr−2 have not touched Mr−1 at all and therefore, the clique L ∪ Mr−1 has
just been destroyed at the penultimate stage. Also, vr does not belong to Mr−1. Hence,
the sizes of the maximal cliques of both subgraphs finally equallize.
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4. Problem IV.

First note that
[RPK]
[RQL]

=
RP · PK

RQ ·QL
because ∠RPK = ∠RQL. Moreover,

PK

QL
=

CP

CQ
since CPK and CQL are similar. Therefore,

PK

QL
=

PB

QA
(since PK and QL are

the perpendicular bisectors of BC and AC, respectively). Thus,

[RPK]
[RQL]

=
RP · PB

RQ ·QA
=

[RPB]
[RQA]

,

since ∠BPR = ∠ACB = ∠AQR. However, BR = AR, ∠BPR = ∠AQR, and

∠BRP = ∠CAB = π − ∠ACB − ∠ABC = π − ∠AQR− ∠ARQ = ∠RQA

imply that the triangles RPB and RQA are equivalent. Hence,

[RPK]
[RQL]

=
[RPB]
[RQA]

= 1 ,

and we are done.
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5. Problem V.

Note that 4ab−1|
(
4a2 − 1

)2 implies 4ab−1|
((

4a2 − 1
)
− (4ab− 1)

)2. Consequently,
4ab− 1|(4a)2(a− b)2. Since gcd(4ab− 1, 4a) = 1, we arrive at

4ab− 1|(a− b)2 .

It is easy to see that the conditions 4ab− 1|
(
4a2 − 1

)2 and 4ab− 1|(a− b)2 are actually
equivalent.

Let S be the set of all pairs of positive integers (a, b) satisfying the conditions such
that a 6= b. If S = ∅, we are done. Suppose contrary that |S| > 0. Hence, there is a pair
of integer a0 and b0, (a0, b0) ∈ S, whose sum is minimum. Without loss of generality,
we assume a0 > b0.

Let n =
(a0 − b0)2

4a0b0 − 1
. Hence, the equation

(x− b0)2

4xb0 − 1
= n ,

or equivalently, x2− (2b0(2n + 1))x+
(
b2
0 + n

)
= 0 has one solution x1 = a0. The other

solution x2 = 2b0(2n+1)−a0 =
b2
0 + n

a0
is hence a positive integer (since 2b0(2n+1)−a0 ∈

Z and
b2
0 + n

a0
> 0). Notice that x2 6= b0; otherwise n = 0, which would imply a0 = b0.

Therefore, both (a0, b0) and (x2, b0) are elements of S. Since a0 + b0 is minimum,
x2 + b0 ≥ a0 + b0. Therefore, x2 ≥ a0, or

a2
0 − b2

0 ≥ a0x2 − b2
0 =

(
b2
0 + n

)
− b2

0 = n .

Consequently,
(a0 − b0)2

4a0b0 − 1
≤ a2

0 − b2
0 ,

or equivalently,
a0 − b0 ≥ (a0 + b0) (4a0b0 − 1) > a0 + b0 ,

which is a contradiction. Therefore, the only solution to 4ab− 1|
(
4a2 − 1

)2 is a = b.
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6. Problem VI.

Lemma 1: Let F be an arbitrary field and f a polynomial in F [x1, x2, . . . , xn] such that
the degree of f as a polynomial in xi is at most ti for each i = 1, 2, . . . , n. Let Si ⊆ F ,
1 ≤ i ≤ n, be a set of more than ti distinct members in F . If f(x1, x2, . . . , xn) = 0 for
all n-tuple (x1, x2, . . . , xn) ∈ S1 × S2 × · · · × Sn, then f ≡ 0.
Proof:

One proceeds by mathematical induction on n. The case where n = 1 is clear. Now
suppose the lemma holds for n− 1 variables. Given a polynomial f = f(x1, x2, . . . , xn)
and sets Si’s satisfying the hypothesis of the lemma, one writes

f =
tn∑

r=0

fr(x1, x2, . . . , xn−1)xr
n .

For a fixed (n− 1)-tuple (x1, x2, . . . , xn−1) ∈ S1 × S2 × · · · × Sn−1, the polynomial f is
a polynomial in solely one variable xn. Applying the case when n = 1, the fact that f
vanishes for at least tn+1 values (those elements in Sn) of xn implies that the coefficients
fr(x1, x2, . . . , xn−1) = 0 for all r. This holds for any tuple (x1, x2, . . . , xn−1) ∈ S1×S2×
· · ·×Sn−1. Therefore, for each r = 0, 1, . . . , tn, (x1, x2, . . . , xn−1) ∈ S1×S2×· · ·×Sn−1

implies fr(x1, x2, . . . , xn−1) = 0. The induction hypothesis says that all fr must be
identically zero, and the lemma is justified.

�

Lemma 2: Let F be an arbitrary field and f a polynomial in F [x1, x2, . . . , xn]. Given
are nonempty finite subsets S1, S2, ..., Sn of F . Define gi(xi) =

∏
s∈Si

(xi − s). If f

vanishes over all the common zeros of g1, g2, . . . , gn (that is, f(s1, s2, . . . , sn) = 0 for all
si ∈ S), then there exist polynomials h1, h2, . . . , hn ∈ F [x1, x2, . . . , xn] satisfying

• deg(hi) ≤ deg(f)− deg(gi), and

• f =
n∑

i=1

higi.

Proof:
Define ti = |Si|−1 for each i = 1, 2, . . . , n. From the assumption, f(x1, x2, . . . , xn) =

0 for any n-tuple (x1, x2, . . . , xn) ∈ S1 × S2 × · · · × Sn. For each i, write

gi(xi) = xti+1
i −

ti∑
r=0

gi,rx
r
i .

Thus, if xi ∈ Si, then

xti+1
i =

ti∑
r=0

gi,rx
r
i .

Let f̃ be the polynomial obtained by writing f as a linear combination of monomials
and replacing, repetedly, each occurence of xfi

i , 1 ≤ i ≤ n, where fi > ti by a linear

combination of smaller power of xi, using the relation xti+1
i =

ti∑
r=0

gi,rx
r
i .
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Hence, f̃ is of degree at most ti in xi for every i and is obtained from f by subtracting
from it the sum of the products of the form higi, where hi ∈ F [x1, x2, . . . , xn] has
degree at most deg(f) − deg(gi). Since f(x1, x2, . . . , xn) = f̃(x1, x2, . . . , xn) for all
(x1, x2, . . . , xn) ∈ S1 × S2 × · · · × Sn, then,

f̃(x1, x2, . . . , xn) = 0 ,

for all (x1, x2, . . . , xn) ∈ S1 × S2 × · · · × Sn. Using Lemma 1, f̃ ≡ 0 and hence,

f =
n∑

i=1

higi ,

as desired.

�

Lemma 3: (Combinatorial Nullstellensatz ) Let F be an arbitrary field and f a polyno-

mial in F [x1, x2, . . . , xn]. Suppose the degree of f is
n∑

i=1

ti, where each ti is a nonnegative

integer. Assume that the coefficient of
n∏

i=1

xti
i is nonzero. Then, if S1, S2, . . . , Sn are

subsets of F with |Si| > ti, then there are s1 ∈ S1, s2 ∈ S2, ..., sn ∈ Sn so that

f(s1, s2, ..., sn) 6= 0 .

Proof:
Clearly, one may set |Si| = ti + 1 for all i. Suppose the result is false and define

gi(xi) =
∏

s∈Si

(xi−s). By Lemma 2, there are polynomials h1, h2, . . . , hn ∈ F [x1, x2, . . . , xn]

satisfying deg(hi) ≤ deg(f)− deg(gi) and

f =
n∑

i=1

higi .

By assumption, the coefficient of
n∏

i=1

xti
i is not zero. Hence, the term

n∏
i=1

xti
i must occur

somewhere on the right hand side. However, higi = hi

( ∏
s∈Si

(xi − s)

)
has degree of

atmost deg(f). If there were any monomials of degree deg(f) in higi, they must be

divisible by xti+1
i . Thus, the coefficient of

n∏
i=1

xti
i in the right hand side is zero, a

contradiction!

�

Suppose that the smallest number of plane is `. The following set of planes gives
` ≤ 3n:

{(x, y, z)|z = 1, 2, . . . , n}

and
{(x, y, z)|x + y = 1, 2, . . . , 2n} .
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One must show that ` = 3n is the smallest possible number.
Assume contrary that ` < 3n and there is a set of planes arx + bry + crz + dr = 0,

r = 1, 2, . . . , `, whose union contains S but does not include (0, 0, 0). Consider the
polynomial P (x, y, z) ∈ R[x, y, z] defined as follows:

P (x, y, z) =
∏̀
r=1

(arx + bry + crz + dr)− δ

(
n∏

i=1

(x− i)

) n∏
j=1

(y − j)

( n∏
k=1

(z − k)

)
,

in which the constant δ is so chosen that P (0, 0, 0) = 0. (Clearly, δ 6= 0.) Consequently,

P (x, y, z) = 0 for all x, y, z ∈ {0, 1, 2, · · · , n}. Since the degree of
∏̀
r=1

(arx + bry + crz + dr)

is ` which is less than 3n, therefore, the term xnynzn does not occur in the expansion

of this product. In δ

(
n∏

i=1

(x− i)
)(

n∏
j=1

(y − j)

)(
n∏

k=1

(z − k)
)

, it is clear that the coef-

ficient of xnynzn is δ which does not equal zero.
According to Combinatorial Nullstellensatz (Lemma 3), let Sx = Sy = Sz =

{0, 1, 2, . . . , n} (hence, |Sx| = |Sy| = |Sz| = n + 1). Therefore, P (x, y, z) vanishes
for all x ∈ Sx, y ∈ Sy, z ∈ Sz. This means the coefficient of xnynzn must be zero, which
has been proved that it is not. Therefore, ` = 3n, as desired.


