
42nd International Mathematical Olympiad

Washington DC, United States of America, July 2001

1. Let ABC be an acute-angled triangle with circumcentre O. Let P on BC be the foot
of the altitude from A.

Suppose that ∠BCA ≥ ∠ABC + 30◦.

Prove that ∠CAB + ∠COP < 90◦.
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Essentially, the trick is to convert this to a trigonometry inequality. There are many
ways to do it, we present the simplest one. Most of the other solutions involve proofing
PB ≥ 3PC from the desired result follows readily.

Soln. Let R be the circumradius. Then

CP = AC cos C = 2R sinB cos C

= R(sin(B + C)− sin(C −B)) ≤ R(1− sin(C −B))

≤ R(1− sin 30◦) = R/2.

So, OP > OC−PC ≥ PC, and whence ∠PCO > ∠POC. The desired result then follows
from the fact that ∠PCO + ∠CAB = 90◦.

Second soln. First we prove that PB ≥ 3PC. We have PB = AP cot B, PC = AP cot C.
Therefore PB ≥ 3PC if and only if tan C ≥ 3 tan B. Since C ≥ B + 30◦, and C is acute,
we have tanC ≥ tan(B + 30◦). Thus

tanC − 3 tanB ≥ tan(B + 30◦)− 3 tan B

=
tanB + 1√

3

1− 1√
3

tanB
− 3 tanB

=
3√

3− tanB
(tanB − 1√

3
)2 ≥ 0
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since B < 60◦. Thus PB ≥ 3PC and whence PC ≤ PM where M is the midpoint of
BC. This, together with the fact that OP is the hypothenuse of the right-angled triangle
OPM , implies OP > PM ≥ PC.

2. Prove that
a√

a2 + 8bc
+

b√
b2 + 8ca

+
c√

c2 + 8ab
≥ 1

for all positive real numbers a, b and c.

Soln. Note that f(x) = 1√
x

is convex for positive x. Recall weighted Jensen’s inequality:-

af(x) + bf(y) + cf(z) ≥ (a + b + c)f(ax + by + cz).

Apply this to get

LHS ≥
√

(a + b + c)3

a3 + b3 + c3 + 24abc
≥ 1.

The last step follows because by the AM-GM inequality, we have

(a + b + c)3 ≥ a3 + b3 + c3 + 24abc.

Second soln. By Cauchy-Schwarz Inequality we have

LHS×
(
a
√

a2 + 8bc + b
√

b2 + 8ac + c
√

c2 + 8ab
)
≥ (a + b + c)2

and
(a

√
a2 + 8bc + b

√
b2 + 8ac + c

√
c2 + 8ab)

=
√

a
√

a3 + 8abc +
√

b
√

b3 + 8abc +
√

c
√

c3 + 8abc

≤
√

a + b + c
√

a3 + b3 + c3 + 24abc

≤ (a + b + c)2.

The inequality thus follows.

Third soln. Let abc = 1. Then divide numerator and denominator by a in the first term,
b in second, and c in the third and then substitute x = 1/a3, y = 1/b3, z = 1/c3 with
xyz = 1. The left hand side becomes.

1√
1 + 8x

+
1√

1 + 8y
+

1√
1 + 8z

.

Let the denominators be u, v and w, respectively. Then the given inequality is equivalent
to

(uv + uw + vw) ≥ uvw.
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with u, v, w all positive. Upon squaring both sides, the inequality is equivalent to

1 + 4(x + y + z) + uvw(u + v + w) ≥ 256.

This follows from x+y+z ≥ 3, uvw(u+v+w) ≥ 3(uvw)4/3 = 3[(1+8x)(1+8y)(1+8z)]2/3 ≥
243.

Fourth soln. Without loss of generality, we can assume that a ≥ b ≥ c. Let A =√
a2 + b2 + c2 + 6bc, B =

√
a2 + b2 + c2 + 6ac, C =

√
a2 + b2 + c2 + 6ab. Then A ≤ B ≤

C. By squaring both sides, simplify and the using AM-GM, we have

A + B + C ≤ 3(a + b + c)

and √
a2 + 8bc ≤ A,

√
b2 + 8ac ≤ B,

√
c2 + 8ab ≤ C.

Thus we have
a√

a2 + 8bc
+

b√
b2 + 8ac

c√
c2 + 8ab

≥ a

A
+

b

B
+

c

C

and by Chebyschev’s inequality, we have(
a

A
+

b

B
+

c
)

(A + B + C) ≥ 3(a + b + c).

Thus
a

A
+

b

B
+

c

C
≥ 3(a + b + c)

A + B + C
≥ 1.

Fifth soln. (official solution.) First we shall prove that

a√
a2 + 8bc

≥ a4/3

a4/3 + b4/3 + c4/3
,

or equivalently, that (
a4/3 + b4/3 + c4/3

)2 ≥ a2/3(a2 + 8bc),

or equivalently, that

b4/3 + c4/3 + 2a4/3b4/3 + 2a4/3c4/3 + 2b4/3c4/3 ≥ 8a2/3bc.

The last inequality follows from the AM-GM inequality. Similarly, we have

b√
b2 + 8ac

≥ b4/3

a4/3 + b4/3 + c4/3
,

c√
c2 + 8ab

≥ c4/3

a4/3 + b4/3 + c4/3
.

The result then follows by adding these three inequalities.
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3. Twenty-one girls and twenty-one boys took part in a mathematical contest.

Each contestant solved at most six problems.

For each girl and each boy, at least one problem was solved by both of them.

Prove that there was a problem that was solved by at least three girls and at least
three boys.

Note. One useful way to investigate this problem is to form an incidence matrix. Let
B1, B2, . . . , B21 be the boys and G1, . . . , G21 be the girls and P1, . . . , Pn be the problems.
Set up an incidence matrix with the columns indexed by the problems and the rows indexed
by the students. The entry at (S, Pi) is 1 if S solves Pi and 0 otherwise. We present two
solutions based on this incidence matrix.

Soln. Let bi be the number boys who solve Pi and gi be the number of girls who wolve
Pi. Then the number of ones in every row is at most 6. Thus

∑n
i=1 bi ≤ 6|B| and∑n

i=1 gi ≤ 6|G|.
In this matrix the rows Bi and Gj have at least a pair of ones in the same column

because every boy and every girl solve a common problem. Call such a pair of ones a
one-pair. Thus the number of one-pairs is at least 212. However, counting by the columns,
the number of one-pairs is

∑
bigi. Thus we have∑

gibi ≥ 212.

Now suppose that the conclusion is false. Then bi ≥ 3 implies gi ≤ 2 and vice versa.
Let PG be the set of problems, each of which is solved by at least 3 girls and at most 2
boys, PB be the set of problems, each solved by at least 3 boys and at most 2 girls and
PX be the set of problems, each of which is solved by at most 2 boys and at most 2 girls.
Thus ∑

bigi =
∑

Pi∈PB

bigi +
∑

Pi∈PG∪PX

bigi ≤ 2
∑

Pi∈PB

bi + 2
∑

Pi∈PG∪PX

gi.

Now for any girl Gi, consider the matrix Mi with whose columns correspond to prob-
lems solved by Gi and whose rows are all the boys. Then in this matrix, every row has
at least a one. Thus there are at least 21 ones in this matrix. By the pigeonhole prin-
ciple, there is a column, say Pj with at least 4 ones. Thus each girl solves at least one
problem in PB . Hence

∑
Pi∈PB

gi ≥ |G| or equivalently,
∑

Pi∈PG∪PX
gi ≤ 5|G|. Similarly,∑

Pi∈PB
bi ≤

∑
Pi∈PB∪PX

bi ≤ 5|B|. Thus we have

212 ≤
∑

bigi ≤ 10(|G|+ |B|) = 420

a contradiction.

Second soln. With the same notation as in the first solution, divide the incidence matrix
M into two part: MB which is formed by the columns in PB ∪ PX and MG which is
formed by the columns in PG. The matrix M has 441 one-pairs. Thus one of these two
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submatrices, say MB , has at least 221 one-pairs. (The case for MG foolows by symmetry.)
Thus one of the girls, say G1, contributes at least 11 one-pairs in MB . Since each one in
row G1 contributes at most 2 one-pairs in MB , there are 6 ones in row G1 in MB . This
means the row G1 in MG does not have any ones. Thus G1 contributes at most 12 one-pairs
in M . But G1 should contribute at least 21 one-pairs and we have a contridiction.

Third soln. Suppose on the contrary that no problem was solved by at least three girls
and at least three boys. With PG, PB , PX defined as in the first solution, we arrange the
problems as shown in the figure.
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Consider any girl Gi. She contributes at least 21 one-pairs. As in the first solution, she
solves at least 1 problem in PB and at most 5 problems in PB ∪ PX . (Since there are 21
girls, there must be at least d 21

2 e = 11 questions in PB . By a similar argument using the
boys, there must be at least 11 questions in PG as well. We don’t need this in this solution.
But this fact is used in the third solution and is obtained in a different way there.) Thus
the number of ones in Region 3 is at least 21. Similarly, the number of ones in Region
2 is at least 21. The girl Gi contributes at least 21 ones in Regions 1 and 2 since she is
associated with 21 one-pairs. At most 10 of these ones are in Region 2 and therefore at
least 11 are in Region 1. So the girls contribute 21× 11 = 231 ones in Region 1, counting
repetition. Each problem in PG is solved by at most 2 girls. Thus the total number of ones
in Region 1 (without repetition) is at least d231/2e = 116. Likewise, the total number
of ones in Region 4 is at least 116. So the total number of ones in the matrix is at least
116 + 116 + 21 + 21 = 274 contradicting the fact that the total number of ones is at most
42× 6 = 252.

Fourth soln. Suppose each problem Pi is solved by gi girls and bi boys. Then
∑

gibi ≥
212 = 441 since each boy and each girl solved a common problem. We assume that the
conclusion is false, i.e. min{gi, bi} ≤ 2. We also assume that each problem is solved by at
least one boy and at least one girl. So

gi + bi ≥
gibi

2
+ 1.5 and

n∑
i=1

gi + bi ≥ 220.5 + 1.5n.

Since each boy and each girl solved at most 6 problems, we have
∑

gi+bi ≤ 6×21×2 = 252.
From these we have n ≤ 21.
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Now consider a 21 × 21 grid, with one side representing girls, the other boys. Each
cell in the grid is filled with the problems solved by both the corresponding boy and girl.
There are at most 6 problems in each row and each column and each cell must contain at
least one problem. In each row Ri there is problem Pi that appears at least three times.
Similarly, each column Cj has such a problem P ′

j . If Pi = P ′
j for some i, j, then this

problem is solved by three boys and three girls. So we assume that {Pi} and {P ′j} are
disjoint. Also if there exist i, j, k such that Pi = Pj = Pk, the this problem is solved by
three girls and three boys. So the set {Pi} contains at least 11 problems. Similarly, the set
{P ′

j} contains at least 11 problems. Thus there are at least 22 problems, a contradiction.

4. Let n be an odd integer greater than 1, and let k1, k2, . . . , kn be given integers. For
each of the n! permutations a = (a1, a2, . . . , an) of 1, 2, . . . , n, let

S(a) =
n∑

i=1

kiai.

Prove that there are two permutations b and c, b 6= c, such that n! is a divisor of S(b)−S(c).

Soln. Official solution. This is the standard double counting argument. Compute the sum∑
S(a), over all permutations. For each i = 1, 2, . . . , n, the term kji, j = 1, 2, . . . , n,

appears (n− 1)! times. Thus its contribution to
∑

S(a) is (n− 1)!kji. Thus

∑
S(a) = (n− 1)!

∑
i

i
∑

j

kj =
(n + 1)!

2

∑
j

kj (∗)

Now suppose that the conclusion is false. Then the set {S(a)} is a complete set of residues
mod n!. Thus

∑
S(a) ≡ 1 + 2 + · · ·+ n! =

(n! + 1)n!
2

≡ n!
2
6≡ 0 (mod n!).

But from (∗), we have
∑

S(a) = n![(n + 1)/2]
∑

kj ≡ 0 (mod n!). (Note (n + 1)/2 is an
integer as n is odd.) Thus we have a contradiction.

5. In a triangle ABC, let AP bisect ∠BAC, with P on BC, and let BQ bisect ∠ABC,
with Q on CA.

It is known that ∠BAC = 60◦ and that AB + BP = AQ + QB.

What are the possible angles of triangle ABC?

Soln. Extend AB to X such that BX = BP . Similarly, let Y be the point on AC
(extended if necessary) on the opposite side of Q as A such that BQ = QY . Since
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AB + BP = AQ + QB, this implies that AX = AY by construction, and hence ∆AXY is
equilateral with AP being the perpendicular bisector of XY .
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We consider first the case where Y does not coincide with C and lies on AC extended (as
in the figure). Let ∠ABQ = ∠CBQ = x. Then since BX = BP , ∠BXP = ∠BPX = x.
Also, ∠BQC = 60◦ + x and BQ = QY imply that ∠QBY = ∠QY B = 60◦ − x

2 , so
∠PBY = 60◦ − 3x

2 . Since AP is the perpendicular bisector of XY , ∠PXY = ∠PY X, so
that ∠PY C = ∠PXB = x. Thus, ∠PY B = ∠QY B − x = 60◦ − 3x

2 . Hence ∠PBY =
∠PY B and PB = PY = PX, which implies that ∆PBX is equilateral and x = 60◦.
However, this is a degenerate case since ∠BAC = 60◦ and ∠ABC = 2x = 120◦. The case
where Y does not coincide with C and lies in the interior of AC is similar, except that
this time ∠PBY = ∠PY B = 3x

2 − 60◦. We once again reach the conclusion that ∆PBX
is equilateral and x = 60◦, so this is a degenerate case once again.

This leaves just one case to consider where Y coincides with C. In this case, BQ = QC
and so ∠ABQ = ∠CBQ = ∠BCQ = 180◦−60◦

3 = 40◦. We can verify that this 40◦-60◦-80◦
triangle verifies the condition of the question: Extend AB to X so that BX = BP . Then
∆APX is congruent to ∆APC, since ∠PXB = ∠ACB = 40◦, ∠BAP = ∠CAP = 30◦ and
AP is a common side. It follows that PX = PC and so ∠PXC = ∠PCX = 20◦. Hence,
∠AXC = ∠ACX = 60◦, so ∆AXC is equilateral. Thus, AX = AC ⇒ AB + BX =
AQ + QY ⇒ AB + BP = AQ + QB. QED.

Second soln. Let ∠ABQ = ∠CBQ = α, AB = c. AC = b, BC = a. By sine rule, we
have

BP =
c sin 30◦

sin(2α + 30◦)
.

By sine rule again, we have

BQ =
c sin 60◦

sin(α + 60◦)
, AQ =

c sinα

sin(α + 60◦)
.

From AB + BP = AQ + QB, we have

1 +
1

2 sin(2α + 30◦)
=

sin 60◦ + sinα

sin(α + 60◦)
.

Let α = β + 30◦, we get

1 +
1

2 sin(2β + 90◦)
=

sin 60◦ + sin(β + 30◦)
sin(β + 90◦)

i.e.
cos β

cos 2β
=
√

3 +
√

3 sinβ − cos β.
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Let sinβ = x. Since α < 90◦, β < 60◦, x 6= ±1. We get the equation:

√
1− x2

1− 2x2
+

√
1− x2 =

√
3(1 + x)

i.e. (2x− 1)(8x3 − 6x + 1) = 0

x = 1/2 implies β = 30◦, α = 60◦. Therefore the angles of the triangle are 120, 60, 0 which
is impossible. Thus we have 8 sin3 β − 6 sinβ + 1 = 0. This implies sin 3β = −1/2, i.e.,
β = 70◦, α− 40◦. Thus the angles are 80, 40, 60.

6. Let a, b, c, d be integers with a > b > c > d > 0. Suppose that

ac + bd = (b + d + a− c)(b + d− a + c).

Prove that ab + cd is not prime.

Soln. Write the original condition as

a2 − ac + c2 = b2 + bd + d2 (∗)

Assume that ab + cd = p is prime. Then a = (p− cd)/b. Substituting this into (∗), we get

p(ab− cd− cb) = (b2 − c2)(b2 + bd + d2).

since 1 < b2 − c2 < ab < p, we have p | (b2 + bd + d2). But

b2 + bd + d2 < 2ab + cd < 2p,

we have b2 + bd + d2 = p. Hence, by equating the expressions for p, we get

b(b + d− a) = d(c− d).

Since gcd(b, d) = 1, we have b | (c− d), a contradiction because 0 < c− d < b.

Second soln. official solution. Suppose to the contrary that ab + cd is prime. Note that

ab + cd = (a + d) + (b− c)a = m · gcd(a + d, b− c)

for some positive integer m. By assumption, either m = 1 or gcd(a + d, b− c) = 1.

Case (i): m = 1. Then

gcd(a + d, b− c) = ab + cd > ab + cd− (a− b + c + d)

= (a + d)(c− 1) + (b− c)(a + 1)

≥ gcd(a + d, b− c).
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which is false.

Case (ii): gcd(a + d), b− c) = 1. Substituting ac + bd = (a + d)b− (b− c)a for the left
hand side of a + c + bd = (b + d + a− c)(b + d− a + c), we obtain

(a + d)(a− c− d) = (b− c)(b + c + d).

In view of this, there exists a positive integer k such that

a− c− d = k(b− c),

b + c + d = k(a + d).

Adding we get a + b = k(a + b − c + d) and thus k(c − d) = (k − 1)(a + b). Recall that
a > b > c > d. If k = 1 then c = d, a contradiction. If k ≥ 2 then

2 ≥ k

k − 1
=

a + b

c− d
> 2,

a contradiction.

Third soln. The equality ac + bd = (b + d + a− c)(b + d− a + c) is equivalent

a2 − ac + c2 = b2 + bd + d2. (1)

Let ABCD be the quadrilateral with AB = a, BC = d, CD = b, AD = c, ∠BAD = 60◦
and ∠BCD = 120◦. such a quadrilateral exists in view of (1) and the law of cosines; the
common value in (1) is BD2. Let ∠ABC = α so that ∠CDA = 180◦ − α. Apply the law
of cosines to 4ABC and 4ACD gives

a2 + d2 − 2ad cos α = AC2 = b2 + c2 + 2bc cos α.

Hence 2 cos α = (a2 + d2 − b2 − c2)/(ad + bc), and

AC2 = a2 + d2 − ad
a2 + d2 − b2 − c2

ad + bc
=

(ab + cd)(ac + bd)
ad + bc

.

Because ABCD is cyclic, Ptolemy’s theorem gives

(AC ·BD)2 = (ab + cd)2.

It follows that
(ac + bd)(a2 − ac + c2) = (ab + cd)(ad + bc). (2)

Next observe that
ab + cd > ac + bd > ad + bc (3)

The first follows from (a− d)(b− c) > 0 and the second from (a− b)(c− d) > 0.
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Now assume that ab+cd is prime. It then follows from (3) that ab+cd and ac+bd are
relatively prime. Hence from (2), it must be true that ac + bd divides ad + bc. However,
this is impossible by (3). Thus ab + cd is not prime.

Fourth soln. Consider the substitution: w = −a + b + c + d, x = a − b + c + d, y =
a + b − c + d, z = a + b + c − d. Notice that 0 < w < x < y < z because w > 0 from the
condition for ac+bd and the other inequalities follow from a > b > c > d.This substitution
gives: a = (−w + x + y + z)/4 etc Plug this into the condition for ac + bd and we obtain:
3wy = xz.

We want to show that ab+cd = (wx+yz)/4 is not prime. To do this, consider writing
w = 2a13b1t1 where t1 is a product of odd prime powers bigger than 3. Now, write similar
expressions for x, y, z, using the subscripts 2, 3, 4.

Suppose a prime p > 3 divides w, then because 3wy = xz, p | x or z. But if p divides
z, then p divides wx+ yz and we are done, so assume p divides x. This implies t1 | t2. We
can use a similar argument to show that t2 | t1. Hence t1 = t2. Similarly t3 = t4.

From 3wy = xz, we have a1 + a3 = a2 + a4 and 1 + b1 + b3 = b2 + b4. If a1 = a2, then
from the inequality 0 < w < x < y < z, we have b2 ≥ b1 + 1, b3 ≥ b4 and finally a3 < a4, a
contradiction. Thus a1 6= a2. Similarly, a3 6= a4. Thus a1 + a2 > 0 and a3 + a4 > 0. Since
wx + yz = 2a1+a23b1+b2t21 + 2a3+a43b3+b4t23. Hence 8 | wx + yz as 3b1+b2t21 + 3b3+b4t23 ≡ 4
(mod 8) since b1 + b2 and b3 + b4 have opposite parity.
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