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Problem 2
(i) If , ¥and zare three real numbers, all different from 1, such that £¥% = 1 then
2 2 L2
A |

prove that (x — 1}2 (v — 1}2 (=— 1}2 . (With the Zsign for cyclic
2

xr
——>1
: . . : 2 =
summation, this inequality could be rewritten as (x—1) )

(i) Prove that equality is achieved for infinitely many triples of rational numbers x, ¥
and z.

Solution

(I
Consider the transormation f : B/{1} — ®/{—1}defined by flu) = 1 — wand put
a = flz). 3= fly).v = f(=). since fis also one-to one from @/{1}to0 @/{—1}, the

problem is equivalent to showing that @ + 8% +~% = 1 (1)subject to

(7+1) (751) () -1 @
atl/\F+1/\~v+1 and that equallity holds for infinitely many
triplets of rational /3, 7.

Now, rewrite (2) as @3y = (1 + a)(1 + 8)(1 4 v)and expressitas 0 =1+p+gq

where p =a + 3+ vand ¢ = & + v + v, Notice that (1) can be written as

p°—2¢>1Butfromp=—l—qweget P —20=(1+q)° -2g=14+¢>21,

with equality holding iff ¢ = 0. That proves part (i) and points us in the direction of

looking for rational -/ ¥for which @ = Oand (hence) # = —1 that is:
a+3d+y=-1

af + Gy +~va =0 Expressing afrom the first equation and substituting into the

second, we get 37 + (8 +7)(=1 — 5 — ~) = Oas the sole condition we need to satisfy
in rational numbers.

b r
If 7~ mand '~ mfor some integers b, ¢,and m, they would need to satisfy
be=m(b+e)+ (b+e) & m= _be —(b+e)

b+c ‘For mto be integer, we would like
b + eto divide be. Consider the example b =1, e = t* —t.m=1t—1—t>where



b+ ¢ = t%divides be = t{tzz— t)for any integer t # 0. Substituting back, that gives us
gt o __t=-t . __1-t

t—1—12 t—1—1¢2 t — 1 —t2 A simple check shows that
«, 3. Yare rational and well defined and that # = —land ¢ = Ofor any integer t(even for
t=10).

lim =0 . e

Moreover, from &—+oc and 2 < Ofor large ¢, we see that infinitely many ¢
generate infinitely many different triplets of «x, B, and 7. That completes the proof of
part (ii). --Vbarzov 03:03, 5 September 2008 (UTC)
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Problem

Prove that there are infinitely many positive integers rnsuch that n® + lhasa prime
divisor greater than 2n 4 v2n.

Solution

The main idea is to take a gaussian prime @ + biand multiply it by a "twice as small"
¢ + dito get n + 4. The rest is just making up the little details.

For each sufficiently large prime Pof the form 4k + 1, we shall find a corresponding n
such that Pdivides n® + land P > 2n + v'2n_ Since there exist infinitely many such

primes and, for each of them, ™ = v'P— 1 we will have found infinitely many distinct
nsatisfying the hypothesis.

Take a prime Pof the form 4k + land consider its "sum-of-two squares" representation

p=a’+ 52, which we know to exist for all such primes. As @ # b, assume without loss
of generality that b = a. If a = 1, then n = bis what we are looking for, and

p=n’+1> 2n+v2naslongas P(and hence n) is large enough. Assume from now
onthat b = a > 1.

Since aand bare (obviously) co-prime, there must exist integers cand dsuch that

ad+be =1. (1) fact, if cand dare such numbers, then ¢ -+ maand d F mbwork as
a

well for any integer 12, so we can assume that ¢< [_ 2° i].

Define 7 = |ac — bdand let's see why this is a good choice. For starters, notice that
(a* +b*)(c* +d*) =n®+1

[}

e~ :I:E, from (1) we see that amust divide 2and hence a = 2. This implies,
1 2
d‘:_u n:b{b—lj_ (b_ﬁ) =1/44+2(n+2) > 2n
2 alnd 2 . Therefore, , SO
o [r)
b>Vin+ 2. Finally, p="5" +2° > 2n + V2nand the case © £3is cleared.



a—1

< — . .
We can safely assume now)that el < 2 "As b >a > limplies b = 2, we have
1 —be bla—1)+2 ba b h—1
|d| = < <5 =50 |d € ——
a 2a 2a = 2 ldl= ——
12 12
Therefore, 4 4

Before we proceed, we would like to show first that & +b—12> /P Observe that the
function = + VP — #2gver = € (2, v/P — 4)reaches its minima on the ends, so @ + b
given a® + b% = pis minimized for a = 2, where it equals 2+ V7 — 22, So we want to
show that 2 + v'P — 4 = /P + Lwhich is not hard to show for large enough 2.

Now armed with @+ & — 1> \/Pand (2), we get
4n* +1) <pla® +0* — 2(a +b— 1))
< plp—2y/p)

< u?(u—1)% where % = v/P-

wu —1)2 > 4n? + 4> 4n? =
u(u—1) > 2n =

1.5 1
{u—§} }2114-@}211::-

u}v‘/ﬂ-l-%::-

Finally, 2 = u” > 2n + /2n. The proof is complete.--Vbarzov 03:02, 5
September 2008 (UTC)
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Problem

Find all functions f : (0.00) = (0, 00)so fis a function from the positive real numbers)
such that

(f (u W+w}}=ﬁ+f
fly?) + £(=2) y? + 22

for all positive real numbers w. . y. z.satisfying wr = yz.

Solution

Considering w = land = = ¥ = v/Twhich satisfy the constraint wr = ¥zwe get the
following equation:

At once considering = = 1we get {f{l}}z = f(L)and knowing that fRY = Rl
only possible solution is f(1) = Lsince f(1) = Ojs impossible.

So we get the quadratic equation:

r(f(z)® — (1 +2%)f(z) +z =0

Solving for f (*)as a function of zwe get:



1+22+ /T +22)2—422  1+22 4/ 22)2
B B 2x

At once we see that for one value of :r, f(@)can only take one of 2 possible values:
1
flz) =z v flz) = <

1
Take into consideration that f(2) = 2put f3) = 3verifies the quadratic equation and

Fle) = 1

thus so far we can't say that flz) = = ¥ocrror alternatively “ERT This is

indeed the case but we haven't proved it yet.

To prove the previous assertion consider 2 values a,b € R gych that
1

a# 1Ab#1Aa# byhile having fla) =an f(b) b

Consider now the original functional equation with w =a. x = b, ¥ = =z = Vabwhich
verifies the constraint. Substituting we have:

(f@)? + (@) _ a4 a4
flab) + flab)  abtab f(ab) = ab

f(ab)

Now either f(ab) = abor ~ ab. (notice that ab # b A ab # bpy hypothesis)



a4+ &
b =ab b ept=1
if f(ab) = abthenwe have © a2 + b2 and since & > Othe only

solutionis & = 1.

1 1 a’+ Elf 2| .2 4,2 2 4
— — = = b =a’b ea =1

If f(ab) abthen we have ab @+ 82 + a’b’ta “ and

since a = (the only solution is a = 1.

So the only solutions are a = lor b = lin which case both alternatives imply f(1) =1,
Thus we conclude that solutions to the functional equation are a subset of

1
{f{ﬂ-‘} =T Vocnts f{l’} = T H'?*’:rer‘ﬁ}

Finally plug each of these 2 functions into the functional equation and verify that they
indeed are solutions.

1
~ xwe have:

f(z)

This is trivial since (%) = %is an obvious solution and for

LL'E-I-IE

el T L e

1 LT e T 2.2

v T (vz)? Y provided that (wx)* = (y=) which verifies the original
constraint.

So the functional equation has 2 solutions:

1
flz) =z Voeps V flz) = < Veer+
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Problem 5

Let nand kbe positive integers with & = niand k — nan even number. Let 2nlamps
labelled 1, 2, ..., 2nbe given, each of which can be either on or off. Initially all the lamps
are off. We consider sequences of steps: at each step one of the lamps is switched (from
on to off or from off to on).

Let Vbe the number of such sequences consisting of ksteps and resulting in the state
where lamps 1through nare all on, and lamps 7 + 1through 2nare all off.

Let Afbe number of such sequences consisting of ksteps, resulting in the state where
lamps 1through nare all on, and lamps 7 + 1through 2nare all off, but where none of
the lamps 7 + 1through 2nis ever switched on.

N
Determine M.

Solution

For convenience, let Adenote the set (1.2....7)and Btheset (n +1.n+2.....2n)

We can describe each sequences of switching the lamps as a k-dimensional vector

(a1.az, ... ~ﬂk), where a; € A U Bsignifies which lamp was switched on the i-th move
for = 1,2,. -Ii'

Let /A consist of those sequences that contain each of the numbers in Aan odd number of
times and each of the numbers in Ban even number of times. Similarly, let A1denote the
set of those sequences that contain no numbers from Band each of the numbers in Aan

odd number of times. By definition, M = [Mland N = |V

Define the mapping f t N — Mg
flat,az, ... ak) = (b1.b2....bi) : b = {“*’* ifa; € A

ai—mn. fa;eB

What we want to show now is that each element of Mis an image of exactly 2F—™
elements from N, which would imply N = 25~ Afand solve the problem.

Consider an arbitrary element ¥of Aand let libe the number of appearances of the
number din ¥for i = 1.2....n_Now consider the set of pre-images of ¥, that is

Xy = {z|f(z) = v},



It is easy to see that each element = € Xyis derived from ¥by flipping an even number

of its 1-s, 2-s, and so on, where flipping means changing the number J € Ato
7+ m € B, Since each such set of flippings results in a unique , all we want to count is
the number of flippings. We can flip exactly U, 2,4, .. .of the 1-s, so that results in

(El) n (31) n (El) L. — gl
0 2 4 flippings. Combine each of them with the 221,

2's—1 etc. ways of flipping the 2-s, 3-s etc. respectively to get the total number of
flippings: 2it~12f2=1. .. 9fa=1 — phlat-tln—n _ 9k—=n This shows that

| Xy = 2"""and the proof is complete. --Vbarzov 03:04, 5 September 2008 (UTC)
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